LUCA | Laser and Ultrasound Co-Analyzer for thyroid nodules

Summary
This is a trans-disciplinary project that joins endocrinologists (“end-users”), radiologists (“end-users”), physicists who are
experts in medical photonics, engineers who are experts in photonics and ultrasonics and the industry to work towards a
concentrated goal - to produce a novel, point-of-care, low-cost, screening device that combines two photonics systems
(near-infrared diffuse correlation spectroscopy (DCS) and time-resolved spectroscopy (TRS)) with a multi-modal ultrasound
(US) system and a probe that enables multi-modal data acquisition for the screening of thyroid nodules (TN) for thyroid
cancer (TC). TN are a common pathology having a prevalence of palpable nodules around 5% in women and 1% in men,
that increases to 19-76% with the use of neck US. In screening thyroid nodules, to exclude thyroid cancer which occurs in
5-15% of TN, the first step is the US followed by fine needle aspiration biopsy (FNAB) of suspicious nodules. The sensitivity
and specificity of this process in thyroid cancer are limited, with a large number of non-diagnostic and false positive results
that lead to unnecessary surgeries. A reduction in the number of surgeries with a point-of-care diagnostic procedure would
have an important socio-economic impact, diminishing the number of thyroidectomies and the associated comorbidities. This
implies savings of millions of euros per year. Evidence shows that multi-modal approaches that include hemodynamic
information leads to better specificity while each modality on its own fails. We hypothesize that a new optical-ultrasound
probe and integrated system enabled by the development of novel, key enabling photonic components and sub-systems to
provide synergetic information on tissue morphology, composition and function will have a large impact in this field. Our
action is directed by end-users who participate in the proposal and will be exploited by the industrial partners who cover the
whole value-chain.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/688303
Start date: 01-02-2016
End date: 31-05-2021
Total budget - Public funding: 3 999 334,13 Euro - 3 628 845,00 Euro
Cordis data

Original description

This is a trans-disciplinary project that joins endocrinologists (“end-users”), radiologists (“end-users”), physicists who are
experts in medical photonics, engineers who are experts in photonics and ultrasonics and the industry to work towards a
concentrated goal - to produce a novel, point-of-care, low-cost, screening device that combines two photonics systems
(near-infrared diffuse correlation spectroscopy (DCS) and time-resolved spectroscopy (TRS)) with a multi-modal ultrasound
(US) system and a probe that enables multi-modal data acquisition for the screening of thyroid nodules (TN) for thyroid
cancer (TC). TN are a common pathology having a prevalence of palpable nodules around 5% in women and 1% in men,
that increases to 19-76% with the use of neck US. In screening thyroid nodules, to exclude thyroid cancer which occurs in
5-15% of TN, the first step is the US followed by fine needle aspiration biopsy (FNAB) of suspicious nodules. The sensitivity
and specificity of this process in thyroid cancer are limited, with a large number of non-diagnostic and false positive results
that lead to unnecessary surgeries. A reduction in the number of surgeries with a point-of-care diagnostic procedure would
have an important socio-economic impact, diminishing the number of thyroidectomies and the associated comorbidities. This
implies savings of millions of euros per year. Evidence shows that multi-modal approaches that include hemodynamic
information leads to better specificity while each modality on its own fails. We hypothesize that a new optical-ultrasound
probe and integrated system enabled by the development of novel, key enabling photonic components and sub-systems to
provide synergetic information on tissue morphology, composition and function will have a large impact in this field. Our
action is directed by end-users who participate in the proposal and will be exploited by the industrial partners who cover the
whole value-chain.

Status

CLOSED

Call topic

ICT-28-2015

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-ICT-2015
ICT-28-2015 Cross-cutting ICT KETs