RapidAI4EO | RapidAI4EO - Advancing the State-of-the-Art for Rapid and Continuous Land Monitoring

Summary
New catalogues of nearly daily temporal data will soon dominate the global archives. However, there has been little exploration of Deep Learning (DL) techniques to leverage the spatiotemporal dimension at scale. Training data remains rare relative to the spatiotemporal sampling which is necessary to adequately capture natural and man-made phenomenology latent in these large volumes of high cadence data.

The project will establish the foundations for the next generation of rapid cadence land monitoring applications by:
1. Creating the most complete and dense spatiotemporal training set, combining Sentinel-2 with high cadence, very high resolution, harmonized multispectral Planet imagery at 500,000 patch locations over Europe, and open sourcing these datasets for the benefit of the entire remote sensing community.
2. Developing and benchmarking alternative ways of detecting and classifying change from very high cadence observations by training state-of-the-earth multiscale supervised and unsupervised DL classifiers on these unique data sources.
3. Delivering high cadence high resolution change detection heatmaps for the entire European continent.
4. Demonstrating a highly effective end-to-end process to monitor and update the CORINE land cover product, with emphasis on improved understanding of land use, speeding up update cycles and reducing maintenance costs.
Our framework constitutes a game changer in the ability to derive time-critical and location-specific insights into dynamic land surface processes. Our ambition is to enable new and better ways of measuring and understanding the human footprint on our planet, which is a key challenge of the UN Sustainable Development Goals.

This project brings together industry leaders with a strong, demonstrated record of disruptive innovations and young innovators: Planet Labs, Vision Impulse, VITO, IIASA and ONDA DIAS/Serco Italia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101004356
Start date: 01-01-2021
End date: 31-03-2023
Total budget - Public funding: 1 498 987,00 Euro - 1 498 987,00 Euro
Cordis data

Original description

New catalogues of nearly daily temporal data will soon dominate the global archives. However, there has been little exploration of Deep Learning (DL) techniques to leverage the spatiotemporal dimension at scale. Training data remains rare relative to the spatiotemporal sampling which is necessary to adequately capture natural and man-made phenomenology latent in these large volumes of high cadence data.

The project will establish the foundations for the next generation of rapid cadence land monitoring applications by:
1. Creating the most complete and dense spatiotemporal training set, combining Sentinel-2 with high cadence, very high resolution, harmonized multispectral Planet imagery at 500,000 patch locations over Europe, and open sourcing these datasets for the benefit of the entire remote sensing community.
2. Developing and benchmarking alternative ways of detecting and classifying change from very high cadence observations by training state-of-the-earth multiscale supervised and unsupervised DL classifiers on these unique data sources.
3. Delivering high cadence high resolution change detection heatmaps for the entire European continent.
4. Demonstrating a highly effective end-to-end process to monitor and update the CORINE land cover product, with emphasis on improved understanding of land use, speeding up update cycles and reducing maintenance costs.
Our framework constitutes a game changer in the ability to derive time-critical and location-specific insights into dynamic land surface processes. Our ambition is to enable new and better ways of measuring and understanding the human footprint on our planet, which is a key challenge of the UN Sustainable Development Goals.

This project brings together industry leaders with a strong, demonstrated record of disruptive innovations and young innovators: Planet Labs, Vision Impulse, VITO, IIASA and ONDA DIAS/Serco Italia.

Status

CLOSED

Call topic

LC-SPACE-18-EO-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.0. Cross-cutting call topics
H2020-SPACE-2020
LC-SPACE-18-EO-2020 Copernicus evolution: Research activities in support of the evolution of the Copernicus services
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.5. SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
H2020-EU.3.5.0. Cross-cutting call topics
H2020-SPACE-2020
LC-SPACE-18-EO-2020 Copernicus evolution: Research activities in support of the evolution of the Copernicus services