SiMBiT | Single molecule bio-electronic smart system array for clinical testing

Summary
Digitizing biomarkers analysis by quantifying them at the single-molecule level is the new frontier for advancing the science of precision health. The SiMBiT project will develop a bio-electronic smart system leveraging on an existing lab-based proof-of-concept that can perform single-molecule detection of both proteins and DNA bio-markers. Specifically, the SiMBiT activities will develop the lab-based device into a cost-effective portable multiplexing array prototype that integrates, with a modular approach, novel materials and standard components/interfaces. The SiMBiT platform exhibits enhanced sensing capabilities: specificity towards both genomic and protein markers along with single-molecule detection limits and time-to-results within two hours. This makes the SiMBiT prototype the world best performing bio-electronic sensing system ever. SiMBiT will reach these ambitious goals with a multidisciplinary research effort involving device-physicists, analytical-chemists, bio-chemists, clinicians, electronic- and system-engineers. The platform is also single-use and cost-effective and can work in low-resource settings. The SiMBiT field-effect sensing system will be fabricated by means of future mass-manufacturable, large-area compatible, scalable techniques such as printing and other direct-writing processes. 3D printing of a module is also foreseen. The SiMBiT prototype will demonstrate, for first time, a matrix of up to 96 bio-electronic sensors and a Si IC chip for the processing of all data coming from the matrix, multiplexing single-molecule detection. As the Si IC pins are limited the chip area is reduced and its cost minimized, enabling a single-use assay plate. SiMBiT will apply the multiplexing single molecule technology to the early detection of human pancreatic neoplasms in a well-defined clinical context, performing simultaneous analysis of genomic and protein markers with a minimal sample volume, reduced costs and reduced time-to-results.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/824946
Start date: 01-01-2019
End date: 31-12-2022
Total budget - Public funding: 3 020 638,00 Euro - 3 020 638,00 Euro
Cordis data

Original description

Digitizing biomarkers analysis by quantifying them at the single-molecule level is the new frontier for advancing the science of precision health. The SiMBiT project will develop a bio-electronic smart system leveraging on an existing lab-based proof-of-concept that can perform single-molecule detection of both proteins and DNA bio-markers. Specifically, the SiMBiT activities will develop the lab-based device into a cost-effective portable multiplexing array prototype that integrates, with a modular approach, novel materials and standard components/interfaces. The SiMBiT platform exhibits enhanced sensing capabilities: specificity towards both genomic and protein markers along with single-molecule detection limits and time-to-results within two hours. This makes the SiMBiT prototype the world best performing bio-electronic sensing system ever. SiMBiT will reach these ambitious goals with a multidisciplinary research effort involving device-physicists, analytical-chemists, bio-chemists, clinicians, electronic- and system-engineers. The platform is also single-use and cost-effective and can work in low-resource settings. The SiMBiT field-effect sensing system will be fabricated by means of future mass-manufacturable, large-area compatible, scalable techniques such as printing and other direct-writing processes. 3D printing of a module is also foreseen. The SiMBiT prototype will demonstrate, for first time, a matrix of up to 96 bio-electronic sensors and a Si IC chip for the processing of all data coming from the matrix, multiplexing single-molecule detection. As the Si IC pins are limited the chip area is reduced and its cost minimized, enabling a single-use assay plate. SiMBiT will apply the multiplexing single molecule technology to the early detection of human pancreatic neoplasms in a well-defined clinical context, performing simultaneous analysis of genomic and protein markers with a minimal sample volume, reduced costs and reduced time-to-results.

Status

CLOSED

Call topic

ICT-07-2018

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-ICT-2018-2
ICT-07-2018 Electronic Smart Systems (ESS)