ALFAMA | Advanced Lightweight and Flexible Array with Mechanical Architecture

Summary
More and more missions require power supply > 25 kW such as solar electrical propulsion, high throughput satellites. However, the restricted volume between the fairing and the spacecraft sidewall limits the number & the dimension of rigid solar panels during launch. Therefore, the answer for this growing power demand lies neither in stacking more rigid solar arrays, nor by marginal efficiency improvements on III-V multi-junction solar cells, but rather in innovative/disruptive photovoltaic solutions. More solar cells per unit of volume are needed in stowed configuration, and flexible solar arrays are the only answer for this high-power challenge.

In this context, ALFAMA project brings answers for the mass, cost & power challenge, with ambitions at each level of the solar array:
- The mechanical architecture, with a modular & retractable deployment system
- The photovoltaic assembly fabrication process, with printed harness & lamination for easier integration, manufacturing and high voltage protection
- The PVA structure, with thin flexible layers for high power/mass & power/volume ratio, adapted to epitaxial lift-off
- The solar cells, with the development of highly efficient & lightweight III-V IMM lift-off cells.

ALFAMA brings together a team of 8 partners, leaders in their field, from 3 EU-member states, who will join their efforts towards the realization of a disruptive solar array technology (end TRL 4-5), with the following key performances:
1/ Power/mass ratio increased by ≥ 50% with III-V lift-off solar cells
2/ Cost reduction with high throughput assembly process
3/ Power density increased more than 4 times with compact stowed configuration
4/ Relevant roadmaps for space & non-space applications

ALFAMA's drastic improvements will enhance the EU space sector competitiveness, enable new missions and build synergies between space and non-space activities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/821876
Start date: 01-11-2018
End date: 31-10-2021
Total budget - Public funding: 2 998 238,00 Euro - 2 998 238,00 Euro
Cordis data

Original description

More and more missions require power supply > 25 kW such as solar electrical propulsion, high throughput satellites. However, the restricted volume between the fairing and the spacecraft sidewall limits the number & the dimension of rigid solar panels during launch. Therefore, the answer for this growing power demand lies neither in stacking more rigid solar arrays, nor by marginal efficiency improvements on III-V multi-junction solar cells, but rather in innovative/disruptive photovoltaic solutions. More solar cells per unit of volume are needed in stowed configuration, and flexible solar arrays are the only answer for this high-power challenge.

In this context, ALFAMA project brings answers for the mass, cost & power challenge, with ambitions at each level of the solar array:
- The mechanical architecture, with a modular & retractable deployment system
- The photovoltaic assembly fabrication process, with printed harness & lamination for easier integration, manufacturing and high voltage protection
- The PVA structure, with thin flexible layers for high power/mass & power/volume ratio, adapted to epitaxial lift-off
- The solar cells, with the development of highly efficient & lightweight III-V IMM lift-off cells.

ALFAMA brings together a team of 8 partners, leaders in their field, from 3 EU-member states, who will join their efforts towards the realization of a disruptive solar array technology (end TRL 4-5), with the following key performances:
1/ Power/mass ratio increased by ≥ 50% with III-V lift-off solar cells
2/ Cost reduction with high throughput assembly process
3/ Power density increased more than 4 times with compact stowed configuration
4/ Relevant roadmaps for space & non-space applications

ALFAMA's drastic improvements will enhance the EU space sector competitiveness, enable new missions and build synergies between space and non-space activities.

Status

CLOSED

Call topic

SPACE-11-TEC-2018

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-SPACE-2018
SPACE-11-TEC-2018 Generic space technologies
H2020-EU.2.1.6.2. Enabling advances in space technology
H2020-SPACE-2018
SPACE-11-TEC-2018 Generic space technologies