FLEXICAST | Robust, and FLEXible CAST iron manufacturing

Summary
The FLEXICAST project presents knowledge-based technologies that aim to follow the way to transform the conventional (batch-by-batch) foundry process into a flexible (mold-by-mold) process. The proposal technologies will be applicable not only to new cast iron foundry lines, but also is readily available to be retro-fitted to existing plants. The specific objectives are: a) A cast iron production cell. Together with melting, treatment and pouring sub processes in a cast iron production cell is essential and imperative. We propose to install the melting shop closer to the pouring system kept closed on the mould carrousel, while the transfer and treatment ladle is removed. The widespread adoption of new melting shop as an operating process is in itself fostering the creation of even more powerful induction-plasma power supplies, versatile melt control technology, high-power density furnaces, temperature control systems, nodularization systems(magnesium vapour), inoculation systems, and automated pouring systems. b) Integration of Artificial Intelligence-based Control System. The objective is to develop a software platform. This can help us to the prediction of local structures, phases and ultimately the local mechanical properties, to asses casting quality in the foundry. In this point, also, three specific methodologies will be studied and improved: DTA analysis and on-line microstructural analysis and X-ray for on-line inspection. c) A robot cell for automated metal finishing processes. d) Demo pilot plant in real industrial settings in order to demonstrate a clear breakthrough using project development in comparison with the state-of-art solutions. Some results are: a) Cast iron manufacturing cell represents, at least, 30% energy reduction in comparison with conventional melting systems. b) Drastic reduction melt temperature scattering during molding process. Reduce metal transport (No transfer and treatment ladles). c) Overheating reduction. d) Reduce rejection of casting pieces.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: http://flexicast-euproject.com
https://cordis.europa.eu/project/id/314540
Start date: 01-11-2012
End date: 31-10-2016
Total budget - Public funding: 9 249 664,00 Euro - 5 700 000,00 Euro
View on other portals
Cordis data

Original description

The FLEXICAST project presents knowledge-based technologies that aim to follow the way to transform the conventional (batch-by-batch) foundry process into a flexible (mold-by-mold) process. The proposal technologies will be applicable not only to new cast iron foundry lines, but also is readily available to be retro-fitted to existing plants. The specific objectives are:a)A cast iron production cell. Together with melting, treatment and pouring sub processes in a cast iron production cell is essential and imperative. We propose to install the melting shop closer to the pouring system kept closed on the mould carrousel, while the transfer and treatment ladle is removed. The widespread adoption of new melting shop as an operating process is in itself fostering the creation of even more powerful induction-plasma power supplies, versatile melt control technology, high-power density furnaces, temperature control systems, nodularization systems(magnesium vapour), inoculation systems, and automated pouring systems.b)Integration of Artificial Intelligence-based Control System. The objective is to develop a software platform. This can help us to the prediction of local structures, phases and ultimately the local mechanical properties, to asses casting quality in the foundry. In this point, also, three specific methodologies will be studied and improved:DTA analysis and on-line microstructural analysis and X-ray for on-line inspection.c)A robot cell for automated metal finishing processes. d)Demo pilot plant in real industrial settings in order to demonstrate a clear breakthrough using project development in comparison with the state-of-art solutions. Some results are:a)Cast iron manufacturing cell represents, at least, 30% energy reduction in comparison with conventional melting systems.b)Drastic reduction melt temperature scattering during molding process. Reduce metal transport (No transfer and treatment ladles).c)Overheating reduction.d)Reduce rejection of casting pieces

Status

ONG

Call topic

FoF.NMP.2012-7

Update Date

27-10-2022
Images
project_picturemedium_1018-LOGO.jpg
project_picturebig_1018-FOTO.jpg
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Factories of the Future Partnership (FoF) - Made in Europe Partnership (MiE)
FP7 - Factories of the Future
FP7-FoF-2012
FoF.NMP.2012-7 - Innovative technologies for casting, material removing and forming processes