GRAIL | GREEN ADVANCED HIGH ENERGY PROPELLANTS FOR LAUNCHERS

Summary
Solid rocket motors are today the most cost effective, competitive and reliable propulsion technology for space launch systems. State of the art solid rocket propellants are based on the oxidizer ammonium perchlorate, AP, and aluminium powder, embedded in a polymer binder matrix. Unfortunately, AP has a negative impact on the environment and on personal health due to ozone depletion, thyroid gland interference and acid rain formation.

The objective of the GRAIL project is to determine if it is possible to replace AP by using a mixture of the new green high energy density oxidizer ammonium dinitramide, ADN, and the low cost oxidizer ammonium nitrate, AN. A high energy density green solid propellant will be developed and compared with state of the art solid propellants with respect to safety, performance and cost, to determine if replacing AP with ADN/AN is a feasible option.

The results will serve as important input for decision makers when considering development of future European launch systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/638719
Start date: 01-02-2015
End date: 31-01-2018
Total budget - Public funding: 3 131 333,75 Euro - 3 131 333,00 Euro
Cordis data

Original description

Solid rocket motors are today the most cost effective, competitive and reliable propulsion technology for space launch systems. State of the art solid rocket propellants are based on the oxidizer ammonium perchlorate, AP, and aluminium powder, embedded in a polymer binder matrix. Unfortunately, AP has a negative impact on the environment and on personal health due to ozone depletion, thyroid gland interference and acid rain formation.

The objective of the GRAIL project is to determine if it is possible to replace AP by using a mixture of the new green high energy density oxidizer ammonium dinitramide, ADN, and the low cost oxidizer ammonium nitrate, AN. A high energy density green solid propellant will be developed and compared with state of the art solid propellants with respect to safety, performance and cost, to determine if replacing AP with ADN/AN is a feasible option.

The results will serve as important input for decision makers when considering development of future European launch systems.

Status

CLOSED

Call topic

COMPET-02-2014

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.6. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector
H2020-COMPET-2014
COMPET-02-2014 Independent access to space