Summary
The ACHIEF project will develop novel efficient materials-based solutions enabling to meet extreme and fluctuating conditions currently employed in Energy Intensive Industries (EII) through the utilization of an Artificial Intelligent combined Modelling approach for the design of innovative materials and protective coatings with improved high-temperature strength, creep and corrosion characteristics.
The ACHIEF proposal addresses the following ambitious objectives:
- Develop innovative high-temperature strength and creep resistance materials based on novel High-Entropy Alloys (HEAs) for improved performance of EII,
- Develop novel protective Polymer Derived Ceramic coatings with improved high-temperature erosion and corrosion resistance,
- Develop high performance coatings based on HEA-nanocomposites with improved high-temperature wear and thermal fatigue resistance,
- Design and develop a new high Chromium steel grade with creep resistance 15% improved and
- Implement advanced high-performance temperature sensors based on Fiber Bragg Grating technology and corrosion sensors based on Electrochemical Impedance Spectroscopy technique.
ACHIEF is a multidisciplinary project engaging 11 EU partners (2 being an SME) from 7 countries covering the RTO and industrial worlds. An implementation plan is presented in the form of 9 work packages, 6 of which are technical in nature. Synergy in communication and dissemination by the several partners and stakeholders will permit to maximize the ACHIEF project impact.
Solutions to overcome the fundamental technological barriers as well as appropriate deliverables, tasks, milestones and risks in order to complete the project objectives in due time are presented. The EII industrial sector will be highly impacted by the ACHIEF project outcomes which are fully in line with the H2020 LC-SPIRE-08-2020 call: significant energy efficiency improvement, reduction of CO2 emissions and resource utilization, increased lifetime of the equipment.
The ACHIEF proposal addresses the following ambitious objectives:
- Develop innovative high-temperature strength and creep resistance materials based on novel High-Entropy Alloys (HEAs) for improved performance of EII,
- Develop novel protective Polymer Derived Ceramic coatings with improved high-temperature erosion and corrosion resistance,
- Develop high performance coatings based on HEA-nanocomposites with improved high-temperature wear and thermal fatigue resistance,
- Design and develop a new high Chromium steel grade with creep resistance 15% improved and
- Implement advanced high-performance temperature sensors based on Fiber Bragg Grating technology and corrosion sensors based on Electrochemical Impedance Spectroscopy technique.
ACHIEF is a multidisciplinary project engaging 11 EU partners (2 being an SME) from 7 countries covering the RTO and industrial worlds. An implementation plan is presented in the form of 9 work packages, 6 of which are technical in nature. Synergy in communication and dissemination by the several partners and stakeholders will permit to maximize the ACHIEF project impact.
Solutions to overcome the fundamental technological barriers as well as appropriate deliverables, tasks, milestones and risks in order to complete the project objectives in due time are presented. The EII industrial sector will be highly impacted by the ACHIEF project outcomes which are fully in line with the H2020 LC-SPIRE-08-2020 call: significant energy efficiency improvement, reduction of CO2 emissions and resource utilization, increased lifetime of the equipment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/958374 |
Start date: | 01-10-2020 |
End date: | 30-09-2024 |
Total budget - Public funding: | 5 779 003,00 Euro - 5 779 003,00 Euro |
Cordis data
Original description
The ACHIEF project will develop novel efficient materials-based solutions enabling to meet extreme and fluctuating conditions currently employed in Energy Intensive Industries (EII) through the utilization of an Artificial Intelligent combined Modelling approach for the design of innovative materials and protective coatings with improved high-temperature strength, creep and corrosion characteristics.The ACHIEF proposal addresses the following ambitious objectives:
- Develop innovative high-temperature strength and creep resistance materials based on novel High-Entropy Alloys (HEAs) for improved performance of EII,
- Develop novel protective Polymer Derived Ceramic coatings with improved high-temperature erosion and corrosion resistance,
- Develop high performance coatings based on HEA-nanocomposites with improved high-temperature wear and thermal fatigue resistance,
- Design and develop a new high Chromium steel grade with creep resistance 15% improved and
- Implement advanced high-performance temperature sensors based on Fiber Bragg Grating technology and corrosion sensors based on Electrochemical Impedance Spectroscopy technique.
ACHIEF is a multidisciplinary project engaging 11 EU partners (2 being an SME) from 7 countries covering the RTO and industrial worlds. An implementation plan is presented in the form of 9 work packages, 6 of which are technical in nature. Synergy in communication and dissemination by the several partners and stakeholders will permit to maximize the ACHIEF project impact.
Solutions to overcome the fundamental technological barriers as well as appropriate deliverables, tasks, milestones and risks in order to complete the project objectives in due time are presented. The EII industrial sector will be highly impacted by the ACHIEF project outcomes which are fully in line with the H2020 LC-SPIRE-08-2020 call: significant energy efficiency improvement, reduction of CO2 emissions and resource utilization, increased lifetime of the equipment.
Status
SIGNEDCall topic
LC-SPIRE-08-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing