HyperCOG | Hyperconnected Architecture for High Cognitive Production Plants

Summary
HyperCOG project “HYPERCONNECTED ARCHITECTURE FOR HIGH COGNITIVE PRODUCTION PLANTS” addresses the full digital transformation of the process industry and cognitive process production plants through an innovative Industrial Cyber-Physical System (ICPS). It is based on commercially available advanced technologies, that will enable the development of a hyper-connected network of digital nodes. The nodes can catch outstanding streams of data in real-time, which together with the high computing capabilities available nowadays, provide sensing, knowledge and cognitive reasoning to the industrial business.

Furthermore, HyperCOG is deeply grounded in the last advances in Artificial Intelligence such as modelling for twin factories, decision-support systems for human-machine interaction and augmented reality for industrial processes visualization. It pursues self-learning from the process in order to deal with the typical dynamic fluctuations of the industrial processes and global optimization.
The objective is to increase the production performance while reducing the environmental impact by reducing the energy consumption and the CO2 emissions thereof. Society will get profit of this project not only throughout the environmental impact, but through the lifelong learning of workers and vocational training for digitisation, and the available training modules for youth at schools such as ESTIA technological institute or U-PEC University.

The breaking-edge system proposed in HyperCOG project will be validated on the productivity and environmental impacts, replicability and usability aspects on three use cases belonging to the SPIRE scope such us SIDENOR (steel making), CIMSA (cement), and SOLVAY (chemical) use cases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/869886
Start date: 01-09-2019
End date: 31-08-2023
Total budget - Public funding: 7 649 262,00 Euro - 6 504 312,00 Euro
Cordis data

Original description

HyperCOG project “HYPERCONNECTED ARCHITECTURE FOR HIGH COGNITIVE PRODUCTION PLANTS” addresses the full digital transformation of the process industry and cognitive process production plants through an innovative Industrial Cyber-Physical System (ICPS). It is based on commercially available advanced technologies, that will enable the development of a hyper-connected network of digital nodes. The nodes can catch outstanding streams of data in real-time, which together with the high computing capabilities available nowadays, provide sensing, knowledge and cognitive reasoning to the industrial business.

Furthermore, HyperCOG is deeply grounded in the last advances in Artificial Intelligence such as modelling for twin factories, decision-support systems for human-machine interaction and augmented reality for industrial processes visualization. It pursues self-learning from the process in order to deal with the typical dynamic fluctuations of the industrial processes and global optimization.
The objective is to increase the production performance while reducing the environmental impact by reducing the energy consumption and the CO2 emissions thereof. Society will get profit of this project not only throughout the environmental impact, but through the lifelong learning of workers and vocational training for digitisation, and the available training modules for youth at schools such as ESTIA technological institute or U-PEC University.

The breaking-edge system proposed in HyperCOG project will be validated on the productivity and environmental impacts, replicability and usability aspects on three use cases belonging to the SPIRE scope such us SIDENOR (steel making), CIMSA (cement), and SOLVAY (chemical) use cases.

Status

SIGNED

Call topic

DT-SPIRE-06-2019

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
H2020-EU.2.1.5.3. Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries
H2020-NMBP-SPIRE-2019
DT-SPIRE-06-2019 Digital technologies for improved performance in cognitive production plants (IA)