Summary
The iNanoBIT project is aimed to apply nanotechnologies for imaging porcine pancreatic islet cellular transplants and induced pluripotent stem cell-derived beta-cells and subsequent regenerative processes in vivo in a porcine model. The project will develop1) novel highly sensitive nanotechnology-based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole body distribution of the cellular transplants in a preclinical porcine model with excellent translational potential to humans; 2) develop and validate the application of state-of-the-art imaging technologies facilitating the provision of new regenerative therapies to preclinical large animal models and patients; 3) directly contribute to the opening of a new market sector for i) imaging equipment (SPECT, PET/MR, optoacoustic imaging in preclinical large animal models and patients), ii) nano-imaging molecule supplies (nanomolecules allowing multimodality imaging of specific cell types with high sensitivity), iii) validated transplantable in vitro differentiated human beta-cells and porcinexenotransplant islets thus will reinforce the European healthcare supply chain for regenerative medicinal products. The iNanoBIT project will provide the currently missing toolbox for preclinical/clinical testing for a safe translation of regenerative medicinal cellular and tissue products, currently under preclinical and clinical trials, which is vital for the competitiveness of the European healthcare sector in this fast-growing area. The consortium of 5 SME and 3 Academic partners is coordinated and driven by the industrial partners from the field of nanotechnology, imaging and stem cell technologies, providing a perfect match and unique combination addressing the scope and expected impact of the call and providing TRL 3/4 starting points for the key technological elements, and expect to arrive to TRL6 levels of validated technologies ready for marketing by the end of the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/760986 |
Start date: | 01-10-2017 |
End date: | 31-03-2023 |
Total budget - Public funding: | 6 999 997,00 Euro - 6 999 997,00 Euro |
Cordis data
Original description
The iNanoBIT project is aimed to apply nanotechnologies for imaging porcine pancreatic islet cellular transplants and induced pluripotent stem cell-derived beta-cells and subsequent regenerative processes in vivo in a porcine model. The project will develop1) novel highly sensitive nanotechnology-based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole body distribution of the cellular transplants in a preclinical porcine model with excellent translational potential to humans; 2) develop and validate the application of state-of-the-art imaging technologies facilitating the provision of new regenerative therapies to preclinical large animal models and patients; 3) directly contribute to the opening of a new market sector for i) imaging equipment (SPECT, PET/MR, optoacoustic imaging in preclinical large animal models and patients), ii) nano-imaging molecule supplies (nanomolecules allowing multimodality imaging of specific cell types with high sensitivity), iii) validated transplantable in vitro differentiated human beta-cells and porcinexenotransplant islets thus will reinforce the European healthcare supply chain for regenerative medicinal products. The iNanoBIT project will provide the currently missing toolbox for preclinical/clinical testing for a safe translation of regenerative medicinal cellular and tissue products, currently under preclinical and clinical trials, which is vital for the competitiveness of the European healthcare sector in this fast-growing area. The consortium of 5 SME and 3 Academic partners is coordinated and driven by the industrial partners from the field of nanotechnology, imaging and stem cell technologies, providing a perfect match and unique combination addressing the scope and expected impact of the call and providing TRL 3/4 starting points for the key technological elements, and expect to arrive to TRL6 levels of validated technologies ready for marketing by the end of the project.Status
SIGNEDCall topic
NMBP-15-2017Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies