SunCoChem | Photoelectrocatalytic device for SUN-driven CO2 conversion into green CHEMicals

Summary
SunCoChem will have an important impact in reduction of the dependence of the European Chemical Industry (ECI) on carbon feedstock by producing a competitive and integrated solution enabling the carbon-netural production of high valuable chemicals from solar energy, H20 and CO2.
SunCoChem will provide a solution based on a competitive tandem photoelectrocatalytic reactor (TPER) to efficiently produce oxo-products from CO2, water and sunlight. This will be achieved by process intensification coupling a sun-driven carbon dioxide reduction to CO/water oxidation to O2 with C-C bond carbonylation reaction catalysed by novel multifunctional hybrid photoelectrocatalysts (PEcats)
SunCoChem is focused on the production of 3 main oxo-products of interest for three important chemical industries in Europe: i) Glycolic Acid, used as polymers building block and of interest to AVANTIUM CHEMICALS BV; ii) Valeraldheyde, a flavor ingredient of interest to and produced by DOW CHEMICALS; and iii) LimoxalTM a fragrance ingredient of interest to and produced by IFF.
The TPER will be demonstrated at a TRL5 scale of 1m2 and validated by a set of 3 case studies corresponding to the 3 selected products, representing real chemical industry needs from the 3 mentioned industrial partners. The sustainable and efficient technology for oxo-products production will be demonstrated by addressing the recycling CO2 flue gas and by-products from Dow Chemicals and IFF, with an improved chemical energy conversion efficiency (≥10%) and CO2 emissions reduction (≥50%). The advantages of the SunCoChem technology in terms of social and environment impact will be analyzed with respect to conventional production routes of the same target products.
Maximum impact will be ensured through the involvement of the mentioned three industrial end users in the validation of the technology, a well-balanced dissemination, standardization, communication, stakeholders engagement and exploitation of the different results.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/862192
Start date: 01-05-2020
End date: 31-10-2024
Total budget - Public funding: 6 771 145,00 Euro - 6 617 645,00 Euro
View on other portals
Cordis data

Original description

SunCoChem will have an important impact in reduction of the dependence of the European Chemical Industry (ECI) on carbon feedstock by producing a competitive and integrated solution enabling the carbon-netural production of high valuable chemicals from solar energy, H20 and CO2.
SunCoChem will provide a solution based on a competitive tandem photoelectrocatalytic reactor (TPER) to efficiently produce oxo-products from CO2, water and sunlight. This will be achieved by process intensification coupling a sun-driven carbon dioxide reduction to CO/water oxidation to O2 with C-C bond carbonylation reaction catalysed by novel multifunctional hybrid photoelectrocatalysts (PEcats)
SunCoChem is focused on the production of 3 main oxo-products of interest for three important chemical industries in Europe: i) Glycolic Acid, used as polymers building block and of interest to AVANTIUM CHEMICALS BV; ii) Valeraldheyde, a flavor ingredient of interest to and produced by DOW CHEMICALS; and iii) LimoxalTM a fragrance ingredient of interest to and produced by IFF.
The TPER will be demonstrated at a TRL5 scale of 1m2 and validated by a set of 3 case studies corresponding to the 3 selected products, representing real chemical industry needs from the 3 mentioned industrial partners. The sustainable and efficient technology for oxo-products production will be demonstrated by addressing the recycling CO2 flue gas and by-products from Dow Chemicals and IFF, with an improved chemical energy conversion efficiency (≥10%) and CO2 emissions reduction (≥50%). The advantages of the SunCoChem technology in terms of social and environment impact will be analyzed with respect to conventional production routes of the same target products.
Maximum impact will be ensured through the involvement of the mentioned three industrial end users in the validation of the technology, a well-balanced dissemination, standardization, communication, stakeholders engagement and exploitation of the different results.

Status

SIGNED

Call topic

CE-NMBP-25-2019

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
H2020-EU.2.1.2.0. INDUSTRIAL LEADERSHIP - Nanotechnologies - Cross-cutting call topics
H2020-NMBP-ST-IND-2019
CE-NMBP-25-2019 Photocatalytic synthesis (RIA)
H2020-EU.2.1.3. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
H2020-EU.2.1.3.0. Cross-cutting call topics
H2020-NMBP-ST-IND-2019
CE-NMBP-25-2019 Photocatalytic synthesis (RIA)