PROTEUS | Scalable online machine learning for predictive analytics and real-time interactive visualization

Summary
PROTEUS mission is to investigate and develop ready-to-use scalable online machine learning algorithms and interactive visualization techniques for real-time predictive analytics to deal with extremely large data sets and data streams. The developed algorithms and techniques will form a library to be integrated into an enhanced version of Apache Flink, the EU Big Data platform. PROTEUS will contribute to the EU Big Data area by addressing fundamental challenges related to the scalability and responsiveness of analytics capabilities. The requirements are defined by a steelmaking industrial use case. The techniques developed in PROTEUS are however, general, flexible and portable to all data stream-based domains. In particular, the project will go beyond the current state-of-art technology by making the following specific original contributions:
i) Real-time scalable machine learning for massive, high-velocity and complex data streams analytics;
ii) Real-time hybrid computation, batch data and data streams;
iii) Real-time interactive visual analytics for Big Data;
iv) Enhancement of Apache Flink, the EU Big Data platform; and
v) Real-world industrial validation of the technology developed
The PROTEUS impact is manifold: i) strategic, by reducing the gap and dependency from the US technology, empowering the EU Big Data industry through the enrichment of the EU platform Apache Flink; ii) economic, by fostering the development of new skills and new job positions and opportunities towards economic growth; iii) industrial, by considering real-world requirements from industry and by validating the outcome on an operational setting, and iv) scientific, by developing original hybrid and streaming analytic architectures that enable scalable online machine learning strategies and advanced interactive visualisation techniques that are applicable for general data streams in other domains.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/687691
Start date: 01-12-2015
End date: 30-11-2018
Total budget - Public funding: 3 156 525,00 Euro - 3 156 525,00 Euro
Cordis data

Original description

PROTEUS mission is to investigate and develop ready-to-use scalable online machine learning algorithms and interactive visualization techniques for real-time predictive analytics to deal with extremely large data sets and data streams. The developed algorithms and techniques will form a library to be integrated into an enhanced version of Apache Flink, the EU Big Data platform. PROTEUS will contribute to the EU Big Data area by addressing fundamental challenges related to the scalability and responsiveness of analytics capabilities. The requirements are defined by a steelmaking industrial use case. The techniques developed in PROTEUS are however, general, flexible and portable to all data stream-based domains. In particular, the project will go beyond the current state-of-art technology by making the following specific original contributions:
i) Real-time scalable machine learning for massive, high-velocity and complex data streams analytics;
ii) Real-time hybrid computation, batch data and data streams;
iii) Real-time interactive visual analytics for Big Data;
iv) Enhancement of Apache Flink, the EU Big Data platform; and
v) Real-world industrial validation of the technology developed
The PROTEUS impact is manifold: i) strategic, by reducing the gap and dependency from the US technology, empowering the EU Big Data industry through the enrichment of the EU platform Apache Flink; ii) economic, by fostering the development of new skills and new job positions and opportunities towards economic growth; iii) industrial, by considering real-world requirements from industry and by validating the outcome on an operational setting, and iv) scientific, by developing original hybrid and streaming analytic architectures that enable scalable online machine learning strategies and advanced interactive visualisation techniques that are applicable for general data streams in other domains.

Status

CLOSED

Call topic

ICT-16-2015

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-ICT-2015
ICT-16-2015 Big data - research