Highlift | Stirling heat pump for high temperature industrial use

Summary
Industry is the highest heat consuming sector, and its need for high temperature process heat is on the increase. However, 83% of industrial process heat is still supplied by inefficient and polluting fossil fuel boilers. The Highlift project will develop a next-generation high temperature heat pump (HTHP) based on an innovative 4-cylinder alpha configuration Stirling engine design. Highlift accepts low temperature (30´C) input water drawn from industrial waste heat recapture systems and use electrical energy to generate saturated steam at over 180´C. Such temperature lifts are not possible with any other HTHP today. The Highlift project optimises the industrial design via 1) increased system efficiency, 2) improved reliability, 3) 30% cut on production costs, 4) refined production quality control, and 5) improved Cloud-based operating system. We will pilot the near-market prototype at a single high-profile multinational industrial end user with high demands in terms of constant, intensive operation and high output temperature requirements. The project will simultaneously undertake a market maturation process including up- and downstream supply chain development, in-depth target market analyses, and validation of the business and commercialisation strategy. This will bring the HighLift technology to full commercial readiness at the end of the project. Over 25,000 hours of tests with industry since 2012 have shown that it is feasible to use Highlift to generate hot industrial process steam in an economic and environmentally sustainable way. Highlift reduces energy consumption to supply high temperature process heat by 50-70% and will cut industrial CO2 emissions when producing high temperature steam by 70-96%. Our planned commercial roll-out of 174 Highlift heat pumps by 2025 will save our customers a total of €134.2m, and reduce up to 65,600 tons of CO2 (eq) emissions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/831062
Start date: 01-01-2019
End date: 31-03-2022
Total budget - Public funding: 3 364 048,00 Euro - 2 439 511,00 Euro
Cordis data

Original description

Industry is the highest heat consuming sector, and its need for high temperature process heat is on the increase. However, 83% of industrial process heat is still supplied by inefficient and polluting fossil fuel boilers. The Highlift project will develop a next-generation high temperature heat pump (HTHP) based on an innovative 4-cylinder alpha configuration Stirling engine design. Highlift accepts low temperature (30´C) input water drawn from industrial waste heat recapture systems and use electrical energy to generate saturated steam at over 180´C. Such temperature lifts are not possible with any other HTHP today. The Highlift project optimises the industrial design via 1) increased system efficiency, 2) improved reliability, 3) 30% cut on production costs, 4) refined production quality control, and 5) improved Cloud-based operating system. We will pilot the near-market prototype at a single high-profile multinational industrial end user with high demands in terms of constant, intensive operation and high output temperature requirements. The project will simultaneously undertake a market maturation process including up- and downstream supply chain development, in-depth target market analyses, and validation of the business and commercialisation strategy. This will bring the HighLift technology to full commercial readiness at the end of the project. Over 25,000 hours of tests with industry since 2012 have shown that it is feasible to use Highlift to generate hot industrial process steam in an economic and environmentally sustainable way. Highlift reduces energy consumption to supply high temperature process heat by 50-70% and will cut industrial CO2 emissions when producing high temperature steam by 70-96%. Our planned commercial roll-out of 174 Highlift heat pumps by 2025 will save our customers a total of €134.2m, and reduce up to 65,600 tons of CO2 (eq) emissions.

Status

CLOSED

Call topic

EIC-FTI-2018-2020

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-FTI-2018-2020
EIC-FTI-2018-2020