Summary
Cellulose, the most abundant polymer on Earth, is a classic example of a high reinforcement materials produced from renewable resources. Cellulose nanomaterials produced either with chemical and/or mechanical means from cellulose fibres are safe, biodegradable, ultra-strong, durable and suitable for novel functional applications. Cellulose nanomaterials strengthen the production of lean added value products. They enable novel functional products and improve the competitiveness of European industry. However, it is necessary to further develop application processes for cellulose nanomaterials.
NanoTextSurf aims to upgrade existing pilot lines for manufacturing and demonstrating nanotextured surfaces with mechanically enhanced properties. The focal approach of the surface manufacturing concept is to construct nanostructured surfaces based on nanoscale biomaterials. Formation of surfaces will be realised by utilising these building blocks with on-line application techniques (cast and foam coating and screen-printing), which enable the formation of the true nanotextured architecture. This approach will guarantee that robust, efficient and easily up-scalable processes with in-line controlling methods will be available as open access services with reasonable costs.
The nanotextured products and their mechanically enhanced performance will be demonstrated as value added products of the existing and novel bio-based membranes at liquid purification, functional textiles for fire retardant fabrics and linings, novel friction materials for transport applications and abrasive materials for surface finishing. Their economic feasibility, safety and environmental acceptability will be evaluated with life cycle sustainability assessment. The results can be exploited in the existing manufacturing lines. Besides these products, NanoTextSurf partners have recognised additional markets such as hospital textiles, industrial wipes, air purification filters and food packaging materials.
NanoTextSurf aims to upgrade existing pilot lines for manufacturing and demonstrating nanotextured surfaces with mechanically enhanced properties. The focal approach of the surface manufacturing concept is to construct nanostructured surfaces based on nanoscale biomaterials. Formation of surfaces will be realised by utilising these building blocks with on-line application techniques (cast and foam coating and screen-printing), which enable the formation of the true nanotextured architecture. This approach will guarantee that robust, efficient and easily up-scalable processes with in-line controlling methods will be available as open access services with reasonable costs.
The nanotextured products and their mechanically enhanced performance will be demonstrated as value added products of the existing and novel bio-based membranes at liquid purification, functional textiles for fire retardant fabrics and linings, novel friction materials for transport applications and abrasive materials for surface finishing. Their economic feasibility, safety and environmental acceptability will be evaluated with life cycle sustainability assessment. The results can be exploited in the existing manufacturing lines. Besides these products, NanoTextSurf partners have recognised additional markets such as hospital textiles, industrial wipes, air purification filters and food packaging materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/760601 |
Start date: | 01-11-2017 |
End date: | 30-11-2020 |
Total budget - Public funding: | 6 599 711,00 Euro - 5 800 241,00 Euro |
Cordis data
Original description
Cellulose, the most abundant polymer on Earth, is a classic example of a high reinforcement materials produced from renewable resources. Cellulose nanomaterials produced either with chemical and/or mechanical means from cellulose fibres are safe, biodegradable, ultra-strong, durable and suitable for novel functional applications. Cellulose nanomaterials strengthen the production of lean added value products. They enable novel functional products and improve the competitiveness of European industry. However, it is necessary to further develop application processes for cellulose nanomaterials.NanoTextSurf aims to upgrade existing pilot lines for manufacturing and demonstrating nanotextured surfaces with mechanically enhanced properties. The focal approach of the surface manufacturing concept is to construct nanostructured surfaces based on nanoscale biomaterials. Formation of surfaces will be realised by utilising these building blocks with on-line application techniques (cast and foam coating and screen-printing), which enable the formation of the true nanotextured architecture. This approach will guarantee that robust, efficient and easily up-scalable processes with in-line controlling methods will be available as open access services with reasonable costs.
The nanotextured products and their mechanically enhanced performance will be demonstrated as value added products of the existing and novel bio-based membranes at liquid purification, functional textiles for fire retardant fabrics and linings, novel friction materials for transport applications and abrasive materials for surface finishing. Their economic feasibility, safety and environmental acceptability will be evaluated with life cycle sustainability assessment. The results can be exploited in the existing manufacturing lines. Besides these products, NanoTextSurf partners have recognised additional markets such as hospital textiles, industrial wipes, air purification filters and food packaging materials.
Status
CLOSEDCall topic
PILOTS-03-2017Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies