BioRECO2VER | Biological routes for CO2 conversion into chemical building blocks

Summary
The high-level goal of BioRECO2VER is to demonstrate the technical feasibility of more energy efficient and sustainable non-photosynthetic anaerobic and micro-aerobic biotechnological processes for the capture and conversion of CO2 from industrial point sources into 2 valuable platform chemicals, i.e. isobutene and lactate. To overcome several of the existing technical and economic barriers for CO2 conversion by industrial biotechnology, the project will focus on minimizing gas pretreatment costs, maximizing gas transfer in bioreactors, preventing product inhibition, minimizing product recovery costs, reducing footprint and improving scalability. To this end, a hybrid enzymatic process will be investigated for CO2 capture from industrial point sources and conversion of captured CO2 into the targeted end-products will be realized through 3 different proprietary microbial platforms which are representative of a much wider range of products and applications. Bioprocess development and optimization will occur along 2 lines: fermentation and bioelectrochemical systems. The 3 microbial platforms will be advanced to TRL 4, and the most promising solution for each target product will be validated at TRL 5 on real off gases. To prepare for industrial implementation and contribute to public acceptance, the technological activities will be complemented with virtual plant design, economic and sustainability assessments and extensive dissemination.
All activities will be executed by a well-balanced and experienced group of 2 Research and Technology Organizations, 2 universities, 4 SMEs and 4 large industries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/760431
Start date: 01-01-2018
End date: 31-12-2021
Total budget - Public funding: 7 239 148,00 Euro - 6 812 187,00 Euro
Cordis data

Original description

The high-level goal of BioRECO2VER is to demonstrate the technical feasibility of more energy efficient and sustainable non-photosynthetic anaerobic and micro-aerobic biotechnological processes for the capture and conversion of CO2 from industrial point sources into 2 valuable platform chemicals, i.e. isobutene and lactate. To overcome several of the existing technical and economic barriers for CO2 conversion by industrial biotechnology, the project will focus on minimizing gas pretreatment costs, maximizing gas transfer in bioreactors, preventing product inhibition, minimizing product recovery costs, reducing footprint and improving scalability. To this end, a hybrid enzymatic process will be investigated for CO2 capture from industrial point sources and conversion of captured CO2 into the targeted end-products will be realized through 3 different proprietary microbial platforms which are representative of a much wider range of products and applications. Bioprocess development and optimization will occur along 2 lines: fermentation and bioelectrochemical systems. The 3 microbial platforms will be advanced to TRL 4, and the most promising solution for each target product will be validated at TRL 5 on real off gases. To prepare for industrial implementation and contribute to public acceptance, the technological activities will be complemented with virtual plant design, economic and sustainability assessments and extensive dissemination.
All activities will be executed by a well-balanced and experienced group of 2 Research and Technology Organizations, 2 universities, 4 SMEs and 4 large industries.

Status

CLOSED

Call topic

BIOTEC-05-2017

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.4. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
H2020-NMBP-BIO-2017
BIOTEC-05-2017 Microbial platforms for CO2-reuse processes in the low-carbon economy