Summary
The NEMESIS project is a transversal project strategically aiming at developing electride-based cathode technology which is compatible with all kinds of electric propulsion (EP) systems requiring neutralization addressing the full span of required electron currents from 50 mA to 5 A.
The ceramic electride C12A7:e- has excellent materials properties for thermionic devices for EP applications such as hollow cathodes or thermionic emitters. Its properties are superior to those of conventional ceramics currently employed in EP neutralizer technology. It is anticipated that C12A7:e- neutralizer technology is a potential game changer widening the applicability of EP immensely by enabling new mission scenarios due to higher reliability, compatibility with alternative propellants, lower power consumption on satellite and less thermal load at low costs.
The challenge is to fully transfer the theoretically ideal materials properties of C12A7:e- to neutralizer devices in order to fully make use of its potential for application in order to achieve the best performance and reliability and become a disruptive force in the cost-driven satellite market. The interdisciplinary NEMESIS consortium addresses with task by establishing the full chain from materials synthesis via processing to device design, fabrication and testing. All links of the chain are interlocked and will be permanently validated. Four types of ceramic-based neutralizer device concepts will be addressed and matured to TRL4 aiming specifically at exploring the anticipated strengths of C12A7:e-.
The 36 months NEMESIS project requests a total of EC grant of 975.803,75 € for an experienced interdisciplinary consortium of 5 partners from 4 countries: 2 SMEs ATD (Spain, Coordinator), Exotrail (France), 2 universities Justus Liebig University Giessen (Germany), Universidas de Politecnica de Madrid (Spain), 1 research institute FOTEC (Austria).
The ceramic electride C12A7:e- has excellent materials properties for thermionic devices for EP applications such as hollow cathodes or thermionic emitters. Its properties are superior to those of conventional ceramics currently employed in EP neutralizer technology. It is anticipated that C12A7:e- neutralizer technology is a potential game changer widening the applicability of EP immensely by enabling new mission scenarios due to higher reliability, compatibility with alternative propellants, lower power consumption on satellite and less thermal load at low costs.
The challenge is to fully transfer the theoretically ideal materials properties of C12A7:e- to neutralizer devices in order to fully make use of its potential for application in order to achieve the best performance and reliability and become a disruptive force in the cost-driven satellite market. The interdisciplinary NEMESIS consortium addresses with task by establishing the full chain from materials synthesis via processing to device design, fabrication and testing. All links of the chain are interlocked and will be permanently validated. Four types of ceramic-based neutralizer device concepts will be addressed and matured to TRL4 aiming specifically at exploring the anticipated strengths of C12A7:e-.
The 36 months NEMESIS project requests a total of EC grant of 975.803,75 € for an experienced interdisciplinary consortium of 5 partners from 4 countries: 2 SMEs ATD (Spain, Coordinator), Exotrail (France), 2 universities Justus Liebig University Giessen (Germany), Universidas de Politecnica de Madrid (Spain), 1 research institute FOTEC (Austria).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/870506 |
Start date: | 01-10-2019 |
End date: | 31-03-2023 |
Total budget - Public funding: | 975 803,00 Euro - 970 446,00 Euro |
Cordis data
Original description
The NEMESIS project is a transversal project strategically aiming at developing electride-based cathode technology which is compatible with all kinds of electric propulsion (EP) systems requiring neutralization addressing the full span of required electron currents from 50 mA to 5 A.The ceramic electride C12A7:e- has excellent materials properties for thermionic devices for EP applications such as hollow cathodes or thermionic emitters. Its properties are superior to those of conventional ceramics currently employed in EP neutralizer technology. It is anticipated that C12A7:e- neutralizer technology is a potential game changer widening the applicability of EP immensely by enabling new mission scenarios due to higher reliability, compatibility with alternative propellants, lower power consumption on satellite and less thermal load at low costs.
The challenge is to fully transfer the theoretically ideal materials properties of C12A7:e- to neutralizer devices in order to fully make use of its potential for application in order to achieve the best performance and reliability and become a disruptive force in the cost-driven satellite market. The interdisciplinary NEMESIS consortium addresses with task by establishing the full chain from materials synthesis via processing to device design, fabrication and testing. All links of the chain are interlocked and will be permanently validated. Four types of ceramic-based neutralizer device concepts will be addressed and matured to TRL4 aiming specifically at exploring the anticipated strengths of C12A7:e-.
The 36 months NEMESIS project requests a total of EC grant of 975.803,75 € for an experienced interdisciplinary consortium of 5 partners from 4 countries: 2 SMEs ATD (Spain, Coordinator), Exotrail (France), 2 universities Justus Liebig University Giessen (Germany), Universidas de Politecnica de Madrid (Spain), 1 research institute FOTEC (Austria).
Status
CLOSEDCall topic
SPACE-13-TEC-2019Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.6.1. Enabling European competitiveness, non-dependence and innovation of the European space sector