UnCoVerCPS | Unifying Control and Verification of Cyber-Physical Systems

Summary
The proposed research effort provides methods for a faster and more efficient development process of safety- or operation-critical cyber-physical systems in (partially) unknown environments. Cyber-physical systems are very hard to control and verify because of the mix of discrete dynamics (originating from computing elements) and continuous dynamics (originating from physical elements). We present completely new methods for de-verticalisation of the development processes by a generic and holistic approach towards reliable cyber-physical systems development with formal guarantees. In order to guarantee that specifications are met in unknown environments and in unanticipated situations, we synthesise and verify controllers on-the-fly during system execution. This requires to unify control and verification approaches, which were previously considered separately by developers. For instance, each action of an automated car (e.g. lane change) is verified before execution, guaranteeing safety of the passengers. We will develop completely new methods, which are integrated in tools for modelling, control design, verification, and code generation that will leverage the development towards reliable and at the same time open cyber-physical systems. Our approach leverages future certification needs of open and critical cyber-physical systems. The impact of this project is far-reaching and long-term: UnCoVerCPS prepares the EU to be able to develop critical cyber-physical systems that can only be realised and certified when uncertainties in the environment are adequately considered. This is demonstrated by applying our ground-breaking methods to automated vehicles, human-robot collaborative manufacturing, and smart grids within a consortium that has a balanced participation of academic and industrial partners.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/643921
Start date: 01-01-2015
End date: 28-02-2019
Total budget - Public funding: 4 932 902,75 Euro - 4 932 902,00 Euro
Cordis data

Original description

The proposed research effort provides methods for a faster and more efficient development process of safety- or operation-critical cyber-physical systems in (partially) unknown environments. Cyber-physical systems are very hard to control and verify because of the mix of discrete dynamics (originating from computing elements) and continuous dynamics (originating from physical elements). We present completely new methods for de-verticalisation of the development processes by a generic and holistic approach towards reliable cyber-physical systems development with formal guarantees. In order to guarantee that specifications are met in unknown environments and in unanticipated situations, we synthesise and verify controllers on-the-fly during system execution. This requires to unify control and verification approaches, which were previously considered separately by developers. For instance, each action of an automated car (e.g. lane change) is verified before execution, guaranteeing safety of the passengers. We will develop completely new methods, which are integrated in tools for modelling, control design, verification, and code generation that will leverage the development towards reliable and at the same time open cyber-physical systems. Our approach leverages future certification needs of open and critical cyber-physical systems. The impact of this project is far-reaching and long-term: UnCoVerCPS prepares the EU to be able to develop critical cyber-physical systems that can only be realised and certified when uncertainties in the environment are adequately considered. This is demonstrated by applying our ground-breaking methods to automated vehicles, human-robot collaborative manufacturing, and smart grids within a consortium that has a balanced participation of academic and industrial partners.

Status

CLOSED

Call topic

ICT-01-2014

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.1. A new generation of components and systems: Engineering of advanced embedded and energy and resource efficient components and systems
H2020-ICT-2014-1
ICT-01-2014 Smart Cyber-Physical Systems