Summary
Uveal melanoma (UM) is a rare intraocular tumour with an incidence of 5 cases per million individuals per year. Up to 50% of UM patients develop metastases, most often in the liver, and these are invariably fatal. Despite new discoveries in the genetic and molecular background of the primary tumour, little is known about the metastatic disease; furthermore, there is no therapy to either prevent or treat UM metastases. In UM Cure 2020, we aim to identify and validate at the preclinical level novel therapeutic approaches for the treatment of UM metastases. For this purpose, the consortium brings together the major experts of UM in both patient care and basic/translational/clinical research, as well as patient representatives. An ambitious multidisciplinary approach is proposed to move from patient tissue characterisation to preclinical evaluation of single or combinations of drugs. This approach includes the characterisation of the genetic landscape of metastatic UM and its microenvironment, proteomic studies to address signal pathway deregulation and establishment of novel relevant in vitro and in vivo UM models. We also aim to validate accurate surrogate endpoint biomarkers to evaluate therapies and detect metastases as early as possible. Underpinning this will be the UM Cure 2020 virtual biobank registry, linking existing biobanks into a harmonised network, which will prospectively collect primary and metastatic UM samples. Together, our approach will lead to the identification of new therapies, allowing the initiation of UM-dedicated clinical trials sponsored by academia or pharma. Dissemination of results will include the building of a patient network across the countries as part of the consortium as well as a dedicated UM patient and caregiver’s data portal as part of the UM Cure 2020 website, in order to increase patient information and disease awareness.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/667787 |
Start date: | 01-01-2016 |
End date: | 30-06-2021 |
Total budget - Public funding: | 7 971 101,25 Euro - 6 183 456,00 Euro |
Cordis data
Original description
Uveal melanoma (UM) is a rare intraocular tumour with an incidence of 5 cases per million individuals per year. Up to 50% of UM patients develop metastases, most often in the liver, and these are invariably fatal. Despite new discoveries in the genetic and molecular background of the primary tumour, little is known about the metastatic disease; furthermore, there is no therapy to either prevent or treat UM metastases. In UM Cure 2020, we aim to identify and validate at the preclinical level novel therapeutic approaches for the treatment of UM metastases. For this purpose, the consortium brings together the major experts of UM in both patient care and basic/translational/clinical research, as well as patient representatives. An ambitious multidisciplinary approach is proposed to move from patient tissue characterisation to preclinical evaluation of single or combinations of drugs. This approach includes the characterisation of the genetic landscape of metastatic UM and its microenvironment, proteomic studies to address signal pathway deregulation and establishment of novel relevant in vitro and in vivo UM models. We also aim to validate accurate surrogate endpoint biomarkers to evaluate therapies and detect metastases as early as possible. Underpinning this will be the UM Cure 2020 virtual biobank registry, linking existing biobanks into a harmonised network, which will prospectively collect primary and metastatic UM samples. Together, our approach will lead to the identification of new therapies, allowing the initiation of UM-dedicated clinical trials sponsored by academia or pharma. Dissemination of results will include the building of a patient network across the countries as part of the consortium as well as a dedicated UM patient and caregiver’s data portal as part of the UM Cure 2020 website, in order to increase patient information and disease awareness.Status
CLOSEDCall topic
PHC-14-2015Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all