PRECISE4Q | Personalised Medicine by Predictive Modeling in Stroke for better Quality of Life

Summary
Stroke is one of the most severe medical problems with far-reaching public health and socio-economic impact, gathering momentum in an ageing society. PRECISE4Q sets out to minimise the burden of stroke for the individual and for society. It will create multi-dimensional data-driven predictive simulation computer models enabling – for the first time – personalised stroke treatment, addressing patient’s needs in four stages: prevention, acute treatment, rehabilitation and reintegration.
Heterogeneous data from multidisciplinary sources will be integrated: genomics, microbiomics, biochemical; imaging including mechanistic biophysiological models of brain perfusion/function; social, lifestyle, gender; economic and worklife, requiring substantial efforts for information extraction, semantic labelling and standardisation.
Novel hybrid model architectures, structured prediction models, complex deep-learning and gradient boosting models will form the Digital Stroke Patient Platform including a Stroke Risk CDSS (Clinical Decision Support System), Treatment Outcomes CDSS, Rehab Programme, Socio-Economic Planning Tool and New QvidLab. The decision support will be tailored to the patient's current life stage thus enabling clinicians to optimise prevention and treatment strategies over time, and will include personalised coping strategies, support of well-being and reintegration into social life and work.
The predictive capability and clinical precision will be validated with real clinical data generated by (i) prospective clinical studies and (ii) retrospective analyses of big data sets: health registries, cohort studies, health insurance data, electronic health records.
PRECISE4Q will have a clinically measurable and sustainable impact leading to better understanding of risk, health and resilience factors. In contrast to current schematic therapy guidelines, it will support patients throughout their life-long journey by personalised strategies for their specific needs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/777107
Start date: 01-05-2018
End date: 31-10-2022
Total budget - Public funding: 5 978 245,00 Euro - 5 978 245,00 Euro
Cordis data

Original description

Stroke is one of the most severe medical problems with far-reaching public health and socio-economic impact, gathering momentum in an ageing society. PRECISE4Q sets out to minimise the burden of stroke for the individual and for society. It will create multi-dimensional data-driven predictive simulation computer models enabling – for the first time – personalised stroke treatment, addressing patient’s needs in four stages: prevention, acute treatment, rehabilitation and reintegration.
Heterogeneous data from multidisciplinary sources will be integrated: genomics, microbiomics, biochemical; imaging including mechanistic biophysiological models of brain perfusion/function; social, lifestyle, gender; economic and worklife, requiring substantial efforts for information extraction, semantic labelling and standardisation.
Novel hybrid model architectures, structured prediction models, complex deep-learning and gradient boosting models will form the Digital Stroke Patient Platform including a Stroke Risk CDSS (Clinical Decision Support System), Treatment Outcomes CDSS, Rehab Programme, Socio-Economic Planning Tool and New QvidLab. The decision support will be tailored to the patient's current life stage thus enabling clinicians to optimise prevention and treatment strategies over time, and will include personalised coping strategies, support of well-being and reintegration into social life and work.
The predictive capability and clinical precision will be validated with real clinical data generated by (i) prospective clinical studies and (ii) retrospective analyses of big data sets: health registries, cohort studies, health insurance data, electronic health records.
PRECISE4Q will have a clinically measurable and sustainable impact leading to better understanding of risk, health and resilience factors. In contrast to current schematic therapy guidelines, it will support patients throughout their life-long journey by personalised strategies for their specific needs.

Status

CLOSED

Call topic

SC1-PM-17-2017

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.1. SOCIETAL CHALLENGES - Health, demographic change and well-being
H2020-EU.3.1.5. Methods and data
H2020-EU.3.1.5.0. Cross-cutting call topics
H2020-SC1-2017-CNECT-2
SC1-PM-17-2017 Personalised computer models and in-silico systems for well-being