HYPERDIAMOND | The Diamond Revolution in Hyperpolarized MR Imaging – Novel Platform and Nanoparticle Targeted Probe

Summary
Non-invasively imaging small numbers of molecular probes, to help image particular targets or pathways in vivo, is currently undergoing a technological revolution. Recent breakthroughs in molecular hyperpolarization proved > 10,000-fold increase in sensitivity on conventional magnetic resonance imaging (MRI) systems, thus providing insight into previously unseen metabolic processes with enormous potential for socioeconomic relevant diseases. E.g. pyruvate-based hyperpolarized imaging was clinically demonstrated to be effective for prostate cancer diagnostics in human patients. However, the current state-of-the-art hyperpolarization methods are expensive and cumbersome, limiting the access to hyperpolarization technology, and require long hyperpolarization times of 60-90 minutes per dosage; hyperpolarization probes exhibit short hyperpolarization duration (1-5 minutes), limiting the usage of hyperpolarization to metabolic imaging. A quantum technological breakthrough, Nitrogen-Vacancy defects (NV centres) in diamonds, is set to revolutionize the field of hyperpolarization for both hyperpolarizer and probes.
The primary objective of HYPERDIAMOND is the development and commercialization of two new molecular imaging technologies for sensitive diagnosis and treatment monitoring, based on NV centres:
The Diamond Hyperpolarizer will offer a cost- and time-effective solution for hyperpolarization that easily fits current MRI layouts, hyperpolarizes within 5 minutes, and improves clinical viability. The Nano-diamond (ND) Probe will introduce the first targeted MRI probe capable of achieving comparable molecular sensitivity to positron emission tomography (PET) with MRI systems, exhibiting extremely long hyperpolarization duration (~1 hour), and enabling non-metabolic hyperpolarized imaging.
HYPERDIAMOND will bridge the gap between novel quantum and nanotechnology and their applications in hyperpolarized imaging, producing innovation not feasible with current technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/667192
Start date: 01-01-2016
End date: 30-06-2020
Total budget - Public funding: 5 073 550,25 Euro - 4 866 050,00 Euro
Cordis data

Original description

Non-invasively imaging small numbers of molecular probes, to help image particular targets or pathways in vivo, is currently undergoing a technological revolution. Recent breakthroughs in molecular hyperpolarization proved > 10,000-fold increase in sensitivity on conventional magnetic resonance imaging (MRI) systems, thus providing insight into previously unseen metabolic processes with enormous potential for socioeconomic relevant diseases. E.g. pyruvate-based hyperpolarized imaging was clinically demonstrated to be effective for prostate cancer diagnostics in human patients. However, the current state-of-the-art hyperpolarization methods are expensive and cumbersome, limiting the access to hyperpolarization technology, and require long hyperpolarization times of 60-90 minutes per dosage; hyperpolarization probes exhibit short hyperpolarization duration (1-5 minutes), limiting the usage of hyperpolarization to metabolic imaging. A quantum technological breakthrough, Nitrogen-Vacancy defects (NV centres) in diamonds, is set to revolutionize the field of hyperpolarization for both hyperpolarizer and probes.
The primary objective of HYPERDIAMOND is the development and commercialization of two new molecular imaging technologies for sensitive diagnosis and treatment monitoring, based on NV centres:
The Diamond Hyperpolarizer will offer a cost- and time-effective solution for hyperpolarization that easily fits current MRI layouts, hyperpolarizes within 5 minutes, and improves clinical viability. The Nano-diamond (ND) Probe will introduce the first targeted MRI probe capable of achieving comparable molecular sensitivity to positron emission tomography (PET) with MRI systems, exhibiting extremely long hyperpolarization duration (~1 hour), and enabling non-metabolic hyperpolarized imaging.
HYPERDIAMOND will bridge the gap between novel quantum and nanotechnology and their applications in hyperpolarized imaging, producing innovation not feasible with current technology.

Status

CLOSED

Call topic

PHC-11-2015

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.1. SOCIETAL CHALLENGES - Health, demographic change and well-being
H2020-EU.3.1.3. Treating and managing disease
H2020-EU.3.1.3.0. Cross-cutting call topics
H2020-PHC-2015-two-stage
PHC-11-2015 Development of new diagnostic tools and technologies: in vivo medical imaging technologies