SmILES | Smart Integration of Energy Storages in Local Multi Energy Systems for maximising the Share of Renewables in Europe’s Energy Mix

Summary
SmILES zooms in simulation and optimisation of smart storage in local energy systems for increasing the understanding and transparency of innovative multi-energy projects. Setting up a shared data and information platform and effective dissemination of related results will contribute to competence building.
The objective is to obtain fundamental knowledge about linking and optimising heterogeneous energy carriers and systems including storage and renewable energy technologies from local to national level. Furthermore guidelines for modelling and optimising such systems on European level are developed. These guidelines are derived from knowledge of different energy system configurations (SC), which combine heat and electrical power with storage. The SCs are selected to favour a high relevance for replication throughout Europe including e.g. urban quarters, rural township or industrial environment.
This requires the development of a harmonised rich format describing hybrid energy systems and study cases for various scenarios. Different technologies are used to exchange models, allow cross-checks and validate results of simulation and optimisation. A catalogue of best practices of modelling, operating and integrating multi-energy systems is compiled and intended to serve as guideline for stakeholders. Key success factors and barriers from a socio-technical point of view are identified aiming at the reduction of technological gaps and successful implementation of best practices in a socio-economic context. Thus, SmILES will proof the benefit of a hybrid combined heat- and electrical power systems with storage capabilities and deploy the added value of storage integration in future energy systems.
Supplementing the research activities, a long-lasting framework across EERA JP borders is set up by the consortium for extending storage integration technologies by linking other EERA members, stakeholders, energy supplier and industry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/730936
Start date: 01-12-2016
End date: 30-11-2019
Total budget - Public funding: 2 440 682,50 Euro - 2 440 682,00 Euro
Cordis data

Original description

SmILES zooms in simulation and optimisation of smart storage in local energy systems for increasing the understanding and transparency of innovative multi-energy projects. Setting up a shared data and information platform and effective dissemination of related results will contribute to competence building.
The objective is to obtain fundamental knowledge about linking and optimising heterogeneous energy carriers and systems including storage and renewable energy technologies from local to national level. Furthermore guidelines for modelling and optimising such systems on European level are developed. These guidelines are derived from knowledge of different energy system configurations (SC), which combine heat and electrical power with storage. The SCs are selected to favour a high relevance for replication throughout Europe including e.g. urban quarters, rural township or industrial environment.
This requires the development of a harmonised rich format describing hybrid energy systems and study cases for various scenarios. Different technologies are used to exchange models, allow cross-checks and validate results of simulation and optimisation. A catalogue of best practices of modelling, operating and integrating multi-energy systems is compiled and intended to serve as guideline for stakeholders. Key success factors and barriers from a socio-technical point of view are identified aiming at the reduction of technological gaps and successful implementation of best practices in a socio-economic context. Thus, SmILES will proof the benefit of a hybrid combined heat- and electrical power systems with storage capabilities and deploy the added value of storage integration in future energy systems.
Supplementing the research activities, a long-lasting framework across EERA JP borders is set up by the consortium for extending storage integration technologies by linking other EERA members, stakeholders, energy supplier and industry.

Status

CLOSED

Call topic

LCE-33-2016

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.2. Low-cost, low-carbon energy supply
H2020-EU.3.3.2.0. Cross-cutting call topics
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.3. Alternative fuels and mobile energy sources
H2020-EU.3.3.3.0. Cross-cutting call topics
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.4. A single, smart European electricity grid
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.5. New knowledge and technologies
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan