Summary
Current fossil-fuel power plants have been designed to operate in base-load conditions, i.e to provide a constant power output. However, their role is changing, due to the growing share of renewables, both in and outside the EU. Fossil-fuel plants will increasingly be expected to provide fluctuating back-up power, to foster the integration of intermittent renewable energy sources and to provide stability to the grid. However, these plants are not fit to undergo power output fluctuations.
In this context, sCO2-Flex consortium addressees this challenge by developing and validating (at simulation level the global cycle and at relevant environment boiler, heat exchanger(HX) and turbomachinery) the scalable/modular design of a 25MWe Brayton cycle using supercritical CO2, able to increase the operational flexibility and the efficiency of existing and future coal and lignite power plants.
sCO2-Flex will develop and optimize the design of a 25MWe sCO2 Brayton cycle and of its main components (boiler, HX, turbomachinery, instrumentation and control strategies) able to meet long-term flexibility requirements, enabling entire load range optimization with fast load changes, fast start-ups and shut-downs, while reducing environmental impacts and focusing on cost-effectiveness. The project, bringing the sCO2 cycle to TRL6, will pave the way to future demonstration projects (from 2020) and to commercialization of the technology (from 2025). Ambitious exploitation and dissemination activities will be set up to ensure proper market uptake.
Consortium brings together ten partners, i.e academics (experts in thermodynamic cycle/control/simulation, heat exchanging, thermoelectric power, materials), technology providers (HX, Turbomachinery) and power plant operator (EDF-coordinator) covering the whole value chain, constituting an interdisciplinary group of experienced partners, each of them providing its specific expertise and contributing to the achievement of the project’s objectives.
In this context, sCO2-Flex consortium addressees this challenge by developing and validating (at simulation level the global cycle and at relevant environment boiler, heat exchanger(HX) and turbomachinery) the scalable/modular design of a 25MWe Brayton cycle using supercritical CO2, able to increase the operational flexibility and the efficiency of existing and future coal and lignite power plants.
sCO2-Flex will develop and optimize the design of a 25MWe sCO2 Brayton cycle and of its main components (boiler, HX, turbomachinery, instrumentation and control strategies) able to meet long-term flexibility requirements, enabling entire load range optimization with fast load changes, fast start-ups and shut-downs, while reducing environmental impacts and focusing on cost-effectiveness. The project, bringing the sCO2 cycle to TRL6, will pave the way to future demonstration projects (from 2020) and to commercialization of the technology (from 2025). Ambitious exploitation and dissemination activities will be set up to ensure proper market uptake.
Consortium brings together ten partners, i.e academics (experts in thermodynamic cycle/control/simulation, heat exchanging, thermoelectric power, materials), technology providers (HX, Turbomachinery) and power plant operator (EDF-coordinator) covering the whole value chain, constituting an interdisciplinary group of experienced partners, each of them providing its specific expertise and contributing to the achievement of the project’s objectives.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/764690 |
Start date: | 01-01-2018 |
End date: | 30-06-2021 |
Total budget - Public funding: | 5 630 855,00 Euro - 5 630 855,00 Euro |
Cordis data
Original description
Current fossil-fuel power plants have been designed to operate in base-load conditions, i.e to provide a constant power output. However, their role is changing, due to the growing share of renewables, both in and outside the EU. Fossil-fuel plants will increasingly be expected to provide fluctuating back-up power, to foster the integration of intermittent renewable energy sources and to provide stability to the grid. However, these plants are not fit to undergo power output fluctuations.In this context, sCO2-Flex consortium addressees this challenge by developing and validating (at simulation level the global cycle and at relevant environment boiler, heat exchanger(HX) and turbomachinery) the scalable/modular design of a 25MWe Brayton cycle using supercritical CO2, able to increase the operational flexibility and the efficiency of existing and future coal and lignite power plants.
sCO2-Flex will develop and optimize the design of a 25MWe sCO2 Brayton cycle and of its main components (boiler, HX, turbomachinery, instrumentation and control strategies) able to meet long-term flexibility requirements, enabling entire load range optimization with fast load changes, fast start-ups and shut-downs, while reducing environmental impacts and focusing on cost-effectiveness. The project, bringing the sCO2 cycle to TRL6, will pave the way to future demonstration projects (from 2020) and to commercialization of the technology (from 2025). Ambitious exploitation and dissemination activities will be set up to ensure proper market uptake.
Consortium brings together ten partners, i.e academics (experts in thermodynamic cycle/control/simulation, heat exchanging, thermoelectric power, materials), technology providers (HX, Turbomachinery) and power plant operator (EDF-coordinator) covering the whole value chain, constituting an interdisciplinary group of experienced partners, each of them providing its specific expertise and contributing to the achievement of the project’s objectives.
Status
CLOSEDCall topic
LCE-28-2017Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all