Summary
This ESPResSo-project aims to bring the novel emerging hybrid organic-inorganic perovskite-based solar cell (PSC) technology to its next maturity level. In recent years (see Figure 1), this solution-processable solar technology has reached cell efficiency values rivalling those of established thin-film photovoltaic (PV) technology (CIGS, CdTe), even approaching crystalline Si (c-Si) records. The challenge is now to transfer this unprecedented progress from its cell level into a scalable, stable, low-cost technology on module level.
The consortium brought together here has alternative materials, insights in novel cell concepts and architectures, and the processing know-how and equipment at hand to overcome these barriers and realize following global objective:
Demonstrate a highly efficient (>17%) perovskite-based 35x35cm² module architecture that shows long-term (>20 years) reliable performance as deduced from IEC-compliant test conditions. This module is to be produced with industry-relevant low CAPEX manufacturing techniques validating a potential electricity cost as low as 0.05€/kWh in Southern Europe. Installing an actual building-integrated facade element will validate the potential contribution of this technology to the future European energy supply system. Additionally, prototyping advanced, arbitrary-shaped module architectures with specific materials and process combinations will emphasize that new highly innovative applications like on flexible substrates or with high semi-transparency are well accessible on mid- to longer-term with this very promising thin-film PV technology.
The consortium brought together here has alternative materials, insights in novel cell concepts and architectures, and the processing know-how and equipment at hand to overcome these barriers and realize following global objective:
Demonstrate a highly efficient (>17%) perovskite-based 35x35cm² module architecture that shows long-term (>20 years) reliable performance as deduced from IEC-compliant test conditions. This module is to be produced with industry-relevant low CAPEX manufacturing techniques validating a potential electricity cost as low as 0.05€/kWh in Southern Europe. Installing an actual building-integrated facade element will validate the potential contribution of this technology to the future European energy supply system. Additionally, prototyping advanced, arbitrary-shaped module architectures with specific materials and process combinations will emphasize that new highly innovative applications like on flexible substrates or with high semi-transparency are well accessible on mid- to longer-term with this very promising thin-film PV technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/764047 |
Start date: | 01-04-2018 |
End date: | 30-09-2021 |
Total budget - Public funding: | 5 412 657,50 Euro - 5 412 657,00 Euro |
Cordis data
Original description
This ESPResSo-project aims to bring the novel emerging hybrid organic-inorganic perovskite-based solar cell (PSC) technology to its next maturity level. In recent years (see Figure 1), this solution-processable solar technology has reached cell efficiency values rivalling those of established thin-film photovoltaic (PV) technology (CIGS, CdTe), even approaching crystalline Si (c-Si) records. The challenge is now to transfer this unprecedented progress from its cell level into a scalable, stable, low-cost technology on module level.The consortium brought together here has alternative materials, insights in novel cell concepts and architectures, and the processing know-how and equipment at hand to overcome these barriers and realize following global objective:
Demonstrate a highly efficient (>17%) perovskite-based 35x35cm² module architecture that shows long-term (>20 years) reliable performance as deduced from IEC-compliant test conditions. This module is to be produced with industry-relevant low CAPEX manufacturing techniques validating a potential electricity cost as low as 0.05€/kWh in Southern Europe. Installing an actual building-integrated facade element will validate the potential contribution of this technology to the future European energy supply system. Additionally, prototyping advanced, arbitrary-shaped module architectures with specific materials and process combinations will emphasize that new highly innovative applications like on flexible substrates or with high semi-transparency are well accessible on mid- to longer-term with this very promising thin-film PV technology.
Status
CLOSEDCall topic
LCE-07-2016-2017Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all