Summary
The “Blue Acid/Base Battery” (BAoBaB), stores electrical energy using pH and salinity differences in water. The principle of BAoBaB is altering the acid-base balance by means of an excess of available electricity to obtain an acid and base from its corresponding salt solution. When electricity is needed, acid and base are recombined into their corresponding salt solution again while obtaining electrical work from the entropy and enthalpy gain. Our goal is to develop this totally new, environment-friendly, cost-competitive, scalable, water-based electrical energy storage system from TRL3 to TRL5.
Our objectives are:
1. to establish and extend the potential of BAoBaB to become a reliable and environmentally friendly way of storing (renewable) electricity at kWh-MWh scale for application at user premises or at substation level.
2. to understand and enhance mass transfer in round-trip conversion techniques and hence to improve the energy conversion efficiencies of the BAoBaB system, aiming an efficiency >80% and >10 times higher energy density than in Pumped Hydropower Storage.
3. to validate under accepted utility use conditions an automatically operated BAoBaB system (with corresponding battery management) at a scale of 1 kW power and 7 kWh energy storage.
4. To pave the road for cost competitive energy storage with attention to life-cycle cost and performance, aiming at
Our objectives are:
1. to establish and extend the potential of BAoBaB to become a reliable and environmentally friendly way of storing (renewable) electricity at kWh-MWh scale for application at user premises or at substation level.
2. to understand and enhance mass transfer in round-trip conversion techniques and hence to improve the energy conversion efficiencies of the BAoBaB system, aiming an efficiency >80% and >10 times higher energy density than in Pumped Hydropower Storage.
3. to validate under accepted utility use conditions an automatically operated BAoBaB system (with corresponding battery management) at a scale of 1 kW power and 7 kWh energy storage.
4. To pave the road for cost competitive energy storage with attention to life-cycle cost and performance, aiming at
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/731187 |
Start date: | 01-05-2017 |
End date: | 31-07-2021 |
Total budget - Public funding: | 3 998 750,00 Euro - 3 998 750,00 Euro |
Cordis data
Original description
The “Blue Acid/Base Battery” (BAoBaB), stores electrical energy using pH and salinity differences in water. The principle of BAoBaB is altering the acid-base balance by means of an excess of available electricity to obtain an acid and base from its corresponding salt solution. When electricity is needed, acid and base are recombined into their corresponding salt solution again while obtaining electrical work from the entropy and enthalpy gain. Our goal is to develop this totally new, environment-friendly, cost-competitive, scalable, water-based electrical energy storage system from TRL3 to TRL5.Our objectives are:
1. to establish and extend the potential of BAoBaB to become a reliable and environmentally friendly way of storing (renewable) electricity at kWh-MWh scale for application at user premises or at substation level.
2. to understand and enhance mass transfer in round-trip conversion techniques and hence to improve the energy conversion efficiencies of the BAoBaB system, aiming an efficiency >80% and >10 times higher energy density than in Pumped Hydropower Storage.
3. to validate under accepted utility use conditions an automatically operated BAoBaB system (with corresponding battery management) at a scale of 1 kW power and 7 kWh energy storage.
4. To pave the road for cost competitive energy storage with attention to life-cycle cost and performance, aiming at
Status
CLOSEDCall topic
LCE-01-2016-2017Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all