NEPTUNE | Next Generation PEM Electrolyser under New Extremes

Summary
Water electrolysis supplied by renewable energy is the foremost technology for producing “green” hydrogen for
fuel cell vehicles. The ability to follow rapidly an intermittent load makes this an ideal solution for grid balancing.
To achieve large-scale application of PEM electrolysers, a significant reduction of capital costs is required together
with a large increase of production rate and output pressure of hydrogen, while assuring high efficiency and safe
operation. To address these challenges, a step-change in PEM electrolysis technology is necessary. The NEPTUNE
project develops a set of breakthrough solutions at materials, stack and system levels to increase hydrogen pressure
to 100 bar and current density to 4 A cm-2 for the base load, while keeping the nominal energy consumption
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/779540
Start date: 01-02-2018
End date: 30-04-2022
Total budget - Public funding: 1 927 335,00 Euro - 1 926 221,00 Euro
Cordis data

Original description

Water electrolysis supplied by renewable energy is the foremost technology for producing “green” hydrogen for
fuel cell vehicles. The ability to follow rapidly an intermittent load makes this an ideal solution for grid balancing.
To achieve large-scale application of PEM electrolysers, a significant reduction of capital costs is required together
with a large increase of production rate and output pressure of hydrogen, while assuring high efficiency and safe
operation. To address these challenges, a step-change in PEM electrolysis technology is necessary. The NEPTUNE
project develops a set of breakthrough solutions at materials, stack and system levels to increase hydrogen pressure
to 100 bar and current density to 4 A cm-2 for the base load, while keeping the nominal energy consumption

Status

CLOSED

Call topic

FCH-02-1-2017

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.8. FCH2 (energy objectives)
H2020-EU.3.3.8.1. Increase the electrical efficiency and the durability of the different fuel cells used for power production to levels which can compete with conventional technologies, while reducing costs
H2020-JTI-FCH-2017-1
FCH-02-1-2017 Game changer Water Electrolysers
H2020-EU.3.3.8.2. Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
H2020-JTI-FCH-2017-1
FCH-02-1-2017 Game changer Water Electrolysers