FlexiFuel-SOFC | Development of a new and highly efficient micro-scale CHP system based on fuel-flexible gasification and a SOFC

Summary
The project aims at the development of a new innovative highly efficient and fuel flexible micro-scale biomass CHP technology consisting of a small-scale fixed-bed updraft gasifier, a compact gas cleaning system and a solid oxide fuel cell (SOFC). The technology shall be developed for a capacity range of 25 to 150 kW (fuel power) and shall be characterised by a wide fuel spectrum applicable (wood pellets and wood chips of various sizes and moisture contents, SCR, selected agricultural fuels), high gross electric (40%) and overall (85-90%) efficiencies as well as almost zero gaseous and PM emissions. This aim shall be reached by the combination of a fuel-flexible updraft gasification technology with ultra-low particulate matter and condensed alkaline compound concentrations in the product gas, which reduces the efforts for gas cleaning, an integrated gas cleaning approach for dust and HCl removal, desulphurisation and tar cracking as well as a SOFC system which tolerates certain amounts of tars as fuel. It is expected to achieve at the end of the project a TRL of 5.
The objectives of the project are highly relevant to the work programme since they focus on the development of a micro-scale CHP technology with extended fuel flexibility which shall be cost efficient and robust and shall distinguish itself by high electric and overall efficiencies as well as almost zero emissions.
To fulfil these goals an overall methodology shall be applied which is divided into a technology development part (based on process simulations, computer aided design of the single units and the overall system, test plant construction, performance and evaluation of test runs, risk and safety analysis) as well as a technology assessment part covering risk, techno-economic, environmental and overall impact assessments, market studies regarding the possible potentials for application of the new technology as well as dissemination activities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/641229
Start date: 01-05-2015
End date: 30-06-2019
Total budget - Public funding: 5 988 163,75 Euro - 5 982 101,00 Euro
Cordis data

Original description

The project aims at the development of a new innovative highly efficient and fuel flexible micro-scale biomass CHP technology consisting of a small-scale fixed-bed updraft gasifier, a compact gas cleaning system and a solid oxide fuel cell (SOFC). The technology shall be developed for a capacity range of 25 to 150 kW (fuel power) and shall be characterised by a wide fuel spectrum applicable (wood pellets and wood chips of various sizes and moisture contents, SCR, selected agricultural fuels), high gross electric (40%) and overall (85-90%) efficiencies as well as almost zero gaseous and PM emissions. This aim shall be reached by the combination of a fuel-flexible updraft gasification technology with ultra-low particulate matter and condensed alkaline compound concentrations in the product gas, which reduces the efforts for gas cleaning, an integrated gas cleaning approach for dust and HCl removal, desulphurisation and tar cracking as well as a SOFC system which tolerates certain amounts of tars as fuel. It is expected to achieve at the end of the project a TRL of 5.
The objectives of the project are highly relevant to the work programme since they focus on the development of a micro-scale CHP technology with extended fuel flexibility which shall be cost efficient and robust and shall distinguish itself by high electric and overall efficiencies as well as almost zero emissions.
To fulfil these goals an overall methodology shall be applied which is divided into a technology development part (based on process simulations, computer aided design of the single units and the overall system, test plant construction, performance and evaluation of test runs, risk and safety analysis) as well as a technology assessment part covering risk, techno-economic, environmental and overall impact assessments, market studies regarding the possible potentials for application of the new technology as well as dissemination activities.

Status

CLOSED

Call topic

LCE-02-2014

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.2. Low-cost, low-carbon energy supply
H2020-EU.3.3.2.1. Develop the full potential of wind energy
H2020-LCE-2014-1
LCE-02-2014 Developing the next generation technologies of renewable electricity and heating/cooling
H2020-EU.3.3.2.2. Develop efficient, reliable and cost-competitive solar energy systems
H2020-LCE-2014-1
LCE-02-2014 Developing the next generation technologies of renewable electricity and heating/cooling
H2020-EU.3.3.2.4. Develop geothermal, hydro, marine and other renewable energy options
H2020-LCE-2014-1
LCE-02-2014 Developing the next generation technologies of renewable electricity and heating/cooling