Summary
The objective of the project PECSYS is the demonstration of a system for the solar driven electrochemical hydrogen generation with an area >10 m². The efficiency of the system will be >6% and it will operate for six month showing a degradation below 100 cm²) and will be subject to extensive stability optimization. Especially, the use of innovative ALD based metal oxide sealing layers will be studied. The devices will have the great advantage compared to decoupled systems that they will have reduced Ohmic transport losses. Another advantage for application in sunny, hot regions will be that these devices have a positive temperature coefficient, because the improvements of the electrochemical processes overcompensate the reduced PV conversion efficiency. With these results, an in-depth socio-techno-economic model will be developed to predict the levelized cost of hydrogen production, which will be below 5€/Kg Hydrogen in locations with high solar irradiation, as preliminary back of the envelope calculations have revealed. Based on these findings, the most promising technologies will be scaled to module size. The final system will consist of several planar modules and will be placed in Jülich. No concentration or solar tracking will be necessary and therefore the investment costs will be low. It will have an active area >10 m² and will produce more than 10 Kg of hydrogen over six month period.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/735218 |
Start date: | 01-01-2017 |
End date: | 31-12-2020 |
Total budget - Public funding: | 2 499 992,50 Euro - 2 499 992,00 Euro |
Cordis data
Original description
The objective of the project PECSYS is the demonstration of a system for the solar driven electrochemical hydrogen generation with an area >10 m². The efficiency of the system will be >6% and it will operate for six month showing a degradation below 100 cm²) and will be subject to extensive stability optimization. Especially, the use of innovative ALD based metal oxide sealing layers will be studied. The devices will have the great advantage compared to decoupled systems that they will have reduced Ohmic transport losses. Another advantage for application in sunny, hot regions will be that these devices have a positive temperature coefficient, because the improvements of the electrochemical processes overcompensate the reduced PV conversion efficiency. With these results, an in-depth socio-techno-economic model will be developed to predict the levelized cost of hydrogen production, which will be below 5€/Kg Hydrogen in locations with high solar irradiation, as preliminary back of the envelope calculations have revealed. Based on these findings, the most promising technologies will be scaled to module size. The final system will consist of several planar modules and will be placed in Jülich. No concentration or solar tracking will be necessary and therefore the investment costs will be low. It will have an active area >10 m² and will produce more than 10 Kg of hydrogen over six month period.Status
CLOSEDCall topic
FCH-02-3-2016Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.3.8.2. Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market