BALANCE | Increasing penetration of renewable power, alternative fuels and grid flexibility by cross-vector electrochemical processes

Summary
The main goal of the BALANCE proposal is to gather leading research centres in Europe in the domain of Solid Oxide Electrolysis (SOE) and Solid Oxide Fuel Cells (SOFC) to collaborate and accelerate the development of European Reversible Solid Oxide Cell (ReSOC) technology. ReSOC is an electrochemical device that converts electrical energy into hydrogen (electrolysis mode) or alternatively fuel gas to electrical energy (fuel cell mode). It is characterised by its very high efficiency compared to competing technologies. ReSOC enables to store renewable electricity when it is produced in excess or to convert it into a CO2-free transport fuel. Therefore, it is considered as a key technology to allow the broad penetration of renewable electricity into the European energy system.
Fragmented national research efforts are currently impeding quicker development and deployment of next-generation fuel cell and hydrogen technologies. Therefore, BALANCE will identify, quantify and analyse national activities dealing with the diverse aspects of ReSOC technology. This analysis will result in an integrated European research agenda for ReSOC technology to gain synergies and to generate breakthroughs in this highly promising but currently low-TRL technology. Close communication with the advisory board will enable alignment of the proposed agenda with the roadmaps and activities of EERA, IEC and IEA on the topic of hydrogen technologies.
Technical development will cover the development of the next generation of ReSOC cells, their integration in the optimised stack assembly, and investigation of the constraints from reversible operation at system level and integration with the grid. Cost will be addressed by using low-cost materials and improving manufacturability. The experimental work will be supported by modelling and simulation at all scales and by the techno-economic analysis of different integration of the ReSOC technology in industrial applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/731224
Start date: 01-12-2016
End date: 30-11-2019
Total budget - Public funding: 2 856 096,25 Euro - 2 500 596,00 Euro
Cordis data

Original description

The main goal of the BALANCE proposal is to gather leading research centres in Europe in the domain of Solid Oxide Electrolysis (SOE) and Solid Oxide Fuel Cells (SOFC) to collaborate and accelerate the development of European Reversible Solid Oxide Cell (ReSOC) technology. ReSOC is an electrochemical device that converts electrical energy into hydrogen (electrolysis mode) or alternatively fuel gas to electrical energy (fuel cell mode). It is characterised by its very high efficiency compared to competing technologies. ReSOC enables to store renewable electricity when it is produced in excess or to convert it into a CO2-free transport fuel. Therefore, it is considered as a key technology to allow the broad penetration of renewable electricity into the European energy system.
Fragmented national research efforts are currently impeding quicker development and deployment of next-generation fuel cell and hydrogen technologies. Therefore, BALANCE will identify, quantify and analyse national activities dealing with the diverse aspects of ReSOC technology. This analysis will result in an integrated European research agenda for ReSOC technology to gain synergies and to generate breakthroughs in this highly promising but currently low-TRL technology. Close communication with the advisory board will enable alignment of the proposed agenda with the roadmaps and activities of EERA, IEC and IEA on the topic of hydrogen technologies.
Technical development will cover the development of the next generation of ReSOC cells, their integration in the optimised stack assembly, and investigation of the constraints from reversible operation at system level and integration with the grid. Cost will be addressed by using low-cost materials and improving manufacturability. The experimental work will be supported by modelling and simulation at all scales and by the techno-economic analysis of different integration of the ReSOC technology in industrial applications.

Status

CLOSED

Call topic

LCE-33-2016

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.2. Low-cost, low-carbon energy supply
H2020-EU.3.3.2.0. Cross-cutting call topics
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.3. Alternative fuels and mobile energy sources
H2020-EU.3.3.3.0. Cross-cutting call topics
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.4. A single, smart European electricity grid
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan
H2020-EU.3.3.5. New knowledge and technologies
H2020-LCE-2016-ERA
LCE-33-2016 European Common Research and Innovation Agendas (ECRIAs) in support of the implementation of the SET Action Plan