Summary
As the FCHT industry gradually emerges into the markets, the need for trained staff becomes more pressing. TeacHy2020 specifically addresses the supply of undergraduate and graduate education (BEng/BSc, MEng/MSc, PhD etc.) in fuel cell and hydrogen technologies (FCHT) across Europe.
TeacHy 2020 will take a lead in building a repository of university grade educational material, and design and run an MSc course in FCHT, accessible to students from all parts of Europe. To achieve this, the project has assembled a core group of highly experienced institutions working with a network of associate partners (universities, vocational training bodies, industry, and networks). TeacHy2020 offers these partners access to its educational material and the use of the MSc course modules available on the TeacHy2020 site. Any university being able to offer 20% of the course content locally, can draw on the other 80% to be supplied by the project.
This will allow any institution to participate in this European initiative with a minimised local investment. TeacHy2020 will be offering solutions to accreditation and quality control of courses, and support student and industry staff mobility by giving access to placements. Schemes of Continuous Professional Development (CPD) will be integrated into the project activities. We expect a considerable leverage effect which will specifically enable countries with a notable lack of expertise, not only in Eastern Europe, to quickly be able to form a national body of experts.
TeacHy will offer educational material for the general public (e.g. MOOC’s), build a business model to continue operations post-project, and as such act as a single-stop shop and representative for all matters of European university and vocational training in FCHT. The project partnership covers the prevalent languages and educational systems in Europe. The associated network has over 20 partners, including two IPHE countries, and a strong link to IPHE activities in education.
TeacHy 2020 will take a lead in building a repository of university grade educational material, and design and run an MSc course in FCHT, accessible to students from all parts of Europe. To achieve this, the project has assembled a core group of highly experienced institutions working with a network of associate partners (universities, vocational training bodies, industry, and networks). TeacHy2020 offers these partners access to its educational material and the use of the MSc course modules available on the TeacHy2020 site. Any university being able to offer 20% of the course content locally, can draw on the other 80% to be supplied by the project.
This will allow any institution to participate in this European initiative with a minimised local investment. TeacHy2020 will be offering solutions to accreditation and quality control of courses, and support student and industry staff mobility by giving access to placements. Schemes of Continuous Professional Development (CPD) will be integrated into the project activities. We expect a considerable leverage effect which will specifically enable countries with a notable lack of expertise, not only in Eastern Europe, to quickly be able to form a national body of experts.
TeacHy will offer educational material for the general public (e.g. MOOC’s), build a business model to continue operations post-project, and as such act as a single-stop shop and representative for all matters of European university and vocational training in FCHT. The project partnership covers the prevalent languages and educational systems in Europe. The associated network has over 20 partners, including two IPHE countries, and a strong link to IPHE activities in education.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/779730 |
Start date: | 01-11-2017 |
End date: | 31-10-2022 |
Total budget - Public funding: | 1 248 528,00 Euro - 1 248 528,00 Euro |
Cordis data
Original description
As the FCHT industry gradually emerges into the markets, the need for trained staff becomes more pressing. TeacHy2020 specifically addresses the supply of undergraduate and graduate education (BEng/BSc, MEng/MSc, PhD etc.) in fuel cell and hydrogen technologies (FCHT) across Europe.TeacHy 2020 will take a lead in building a repository of university grade educational material, and design and run an MSc course in FCHT, accessible to students from all parts of Europe. To achieve this, the project has assembled a core group of highly experienced institutions working with a network of associate partners (universities, vocational training bodies, industry, and networks). TeacHy2020 offers these partners access to its educational material and the use of the MSc course modules available on the TeacHy2020 site. Any university being able to offer 20% of the course content locally, can draw on the other 80% to be supplied by the project.
This will allow any institution to participate in this European initiative with a minimised local investment. TeacHy2020 will be offering solutions to accreditation and quality control of courses, and support student and industry staff mobility by giving access to placements. Schemes of Continuous Professional Development (CPD) will be integrated into the project activities. We expect a considerable leverage effect which will specifically enable countries with a notable lack of expertise, not only in Eastern Europe, to quickly be able to form a national body of experts.
TeacHy will offer educational material for the general public (e.g. MOOC’s), build a business model to continue operations post-project, and as such act as a single-stop shop and representative for all matters of European university and vocational training in FCHT. The project partnership covers the prevalent languages and educational systems in Europe. The associated network has over 20 partners, including two IPHE countries, and a strong link to IPHE activities in education.
Status
CLOSEDCall topic
FCH-04-3-2017Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.3.8.3. Demonstrate on a large scale the feasibility of using hydrogen to support integration of renewable energy sources into the energy systems, including through its use as a competitive energy storage medium for electricity produced from renewable energy sources