Summary
According to JRC CSP platform, with an increased efficiency of component and price reduction, 11 % of EU electricity could be produced by CSP by 2050. In the EC energy strategy, CSP finds mention as a potential dispatchable RES thus increasing potential market/need for CSP if coupled with flexible, high performant and low CAPEX power conversion units. In this sense sCO2 has been worldwide studied for several years as enabling technology to promote CSP widespread. SOLARSCO2OL presents sCO2 cycles as key enabling technology to facilitate a larger deployment of CSP in EU panorama which is composed (also considering available surfaces and DNI) by medium temperature application (most of them Parabolic trough – Tmax = 550°c) and small/medium size plants enhancing their performances (efficiency, flexibility, yearly production) and reducing their LCOE. Considering that compared to organic and steam based Rankine, sCO2 cycles achieve high efficiencies over a wide temperature of range of heat sources with lower CAPEX, lower OPEX, no use of water as operating fluid (a plus for arid CSP plants area), smaller system footprint, higher operational flexibility, SOLARSCO2OL would like to demonstrate in Spanish La Africana parabolic trough CSP power plant, the first MW Scale EU sCO2 power block operating in a real CSP plant. SOLARSCO2OL will capitalize previous EU expertise (SCARABEUS, sCO2-flex, MUSTEC), bridging the gap with extra-EU countries R&D on these topics and studying different plant layouts also to enhance CSP plants flexibility to enable them to provide soon grid flexibility services. SOLARSCO2OL is driven by an industry oriented consortium which promotes the replication of this concept towards its complete marketability in 2030: this will be properly studied via scale up feasibility studies, environmental and social analysis encouraging business cases in EU (particularly in Italy and Spain as two of the most promising EU CSP countries) and Morocco thanks to MASEN.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/952953 |
Start date: | 01-10-2020 |
End date: | 31-07-2025 |
Total budget - Public funding: | 13 419 700,00 Euro - 9 999 997,00 Euro |
Cordis data
Original description
According to JRC CSP platform, with an increased efficiency of component and price reduction, 11 % of EU electricity could be produced by CSP by 2050. In the EC energy strategy, CSP finds mention as a potential dispatchable RES thus increasing potential market/need for CSP if coupled with flexible, high performant and low CAPEX power conversion units. In this sense sCO2 has been worldwide studied for several years as enabling technology to promote CSP widespread. SOLARSCO2OL presents sCO2 cycles as key enabling technology to facilitate a larger deployment of CSP in EU panorama which is composed (also considering available surfaces and DNI) by medium temperature application (most of them Parabolic trough – Tmax = 550°c) and small/medium size plants enhancing their performances (efficiency, flexibility, yearly production) and reducing their LCOE. Considering that compared to organic and steam based Rankine, sCO2 cycles achieve high efficiencies over a wide temperature of range of heat sources with lower CAPEX, lower OPEX, no use of water as operating fluid (a plus for arid CSP plants area), smaller system footprint, higher operational flexibility, SOLARSCO2OL would like to demonstrate in Evora Molten Salt platform facility the first MW Scale EU sCO2 power block operating coupled with a MS CSP. SOLARSCO2OL will capitalize previous EU expertise (SCARABEUS, sCO2-flex, MUSTEC), bridging the gap with extra-EU countries R&D on these topics and studying different plant layouts also to enhance CSP plants flexibility to enable them to provide soon grid flexibility services. SOLARSCO2OL is driven by an industry oriented consortium which promotes the replication of this concept towards its complete marketability in 2030: this will be properly studied via scale up feasibility studies, environmental and social analysis encouraging business cases in EU (particularly in Italy and Spain as two of the most promising EU CSP countries) and Morocco thanks to MASEN.Status
SIGNEDCall topic
LC-SC3-RES-35-2020Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all