ROLINCAP | Systematic Design and Testing of Advanced Rotating Packed Bed Processes and Phase-Change Solvents for Intensified Post-Combustion CO2 Capture

Summary
ROLINCAP will search, identify and test novel phase-change solvents, including aqueous and non-aqueous options, as well as phase-change packed bed and Rotating Packed Bed processes for post-combustion CO2 capture. These are high-potential technologies, still in their infancy, with initial evidence pointing to regeneration energy requirements below 2.0 GJ/ton CO2 and considerable reduction of the equipment size, several times compared to conventional processes . These goals will be approached through a holistic decision making framework consisting of methods for modeling and design that have the potential for real breakthroughs in CO2 capture research. The tools proposed in ROLINCAP will cover a vast space of solvent and process options going far beyond the capabilities of existing simulators. ROLINCAP follows a radically new path by proposing one predictive modelling framework, in the form of the SAFT-γ equation of state, for both physical and chemical equilibrium, for a wide range of phase behaviours and of molecular structures. The envisaged thermodynamic model will be used in optimization-based Computer-aided Molecular Design of phase-change solvents in order to identify options beyond the very few previously identified phase-change solvents. Advanced process design approaches will be used for the development of highly intensified Rotating Packed Bed processes. Phase-change solvents will be considered with respect to their economic and operability RPB process characteristics. The sustainability of both the new solvents and the packed-bed and RPB processes will be investigated considering holistic Life Cycle Assessment analysis and Safety Health and Environmental Hazard assessment. Selected phase-change solvents, new RPB column concepts and packing materials will be tested at TRL 4 and 5 pilot plants. Software in the form of a new SAFT-γ equation of state will be tested at TRL 5 in the gPROMS process simulator.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/727503
Start date: 01-10-2016
End date: 30-09-2019
Total budget - Public funding: 3 212 587,50 Euro - 3 089 845,00 Euro
Cordis data

Original description

ROLINCAP will search, identify and test novel phase-change solvents, including aqueous and non-aqueous options, as well as phase-change packed bed and Rotating Packed Bed processes for post-combustion CO2 capture. These are high-potential technologies, still in their infancy, with initial evidence pointing to regeneration energy requirements below 2.0 GJ/ton CO2 and considerable reduction of the equipment size, several times compared to conventional processes . These goals will be approached through a holistic decision making framework consisting of methods for modeling and design that have the potential for real breakthroughs in CO2 capture research. The tools proposed in ROLINCAP will cover a vast space of solvent and process options going far beyond the capabilities of existing simulators. ROLINCAP follows a radically new path by proposing one predictive modelling framework, in the form of the SAFT-γ equation of state, for both physical and chemical equilibrium, for a wide range of phase behaviours and of molecular structures. The envisaged thermodynamic model will be used in optimization-based Computer-aided Molecular Design of phase-change solvents in order to identify options beyond the very few previously identified phase-change solvents. Advanced process design approaches will be used for the development of highly intensified Rotating Packed Bed processes. Phase-change solvents will be considered with respect to their economic and operability RPB process characteristics. The sustainability of both the new solvents and the packed-bed and RPB processes will be investigated considering holistic Life Cycle Assessment analysis and Safety Health and Environmental Hazard assessment. Selected phase-change solvents, new RPB column concepts and packing materials will be tested at TRL 4 and 5 pilot plants. Software in the form of a new SAFT-γ equation of state will be tested at TRL 5 in the gPROMS process simulator.

Status

CLOSED

Call topic

LCE-24-2016

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.2. Low-cost, low-carbon energy supply
H2020-EU.3.3.2.0. Cross-cutting call topics
H2020-LCE-2016-RES-CCS-RIA
LCE-24-2016 International Cooperation with South Korea on new generation high-efficiency capture processes