CONDOR | COmbined suN-Driven Oxidation and CO2 Reduction for renewable energy storage

Summary
Conversion of sunlight into fuels and mitigation of anthropogenic climate change are big scientific challenges. CONDOR addresses both of them by developing highly efficient solar-driven conversion of CO2 into fuels and added-value chemicals. We propose a photosynthetic device made of two compartments (a) a photoelectrochemical cell that splits water and CO2 and generates oxygen and syngas, a mixture of H2 and CO; (b) a (photo)reactor that converts syngas into methanol and dimethylether (DME), via bi-functional heterogeneous catalysts. The proposed modular approach enables different configurations depending on the target product. The oxidation process is not limited to O2 production, but entails chlorine and small organic molecules, such as 2,5-furandicarboxylic acid, derived from the oxidation of low-cost and easily available precursors like salt water or alcohol derived biomass, respectively. Employed materials will be obtained through low energy/low temperature routes, mainly based on wet chemical procedures, such as sol-gel chemistry, mild hydrothermal processes, electrochemical processes at ambient temperature. Raw materials/precursors will not be limited by availability on a global scale, making use of organic species, silicon, earth abundant metal oxides, first row transition metals. The final target is a full photosynthetic device with 8% solar-to-syngas and 6% solar-to-DME efficiencies with three-months continuous outdoor operation. This represents a large progress with respect to the state of the art and requires an international collaboration and a multidisciplinary approach, which integrates expertise in nanomaterials preparation and characterisation by operando microscopy and spectroscopy, homogeneous and heterogeneous catalysis, photochemistry/photoelectrochemistry, PEC engineering and assessment of the environmental and socio-economic impact of the proposed technology, including life cycle assessment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101006839
Start date: 01-11-2020
End date: 31-10-2024
Total budget - Public funding: 4 087 866,00 Euro - 3 989 116,00 Euro
Cordis data

Original description

Conversion of sunlight into fuels and mitigation of anthropogenic climate change are big scientific challenges. CONDOR addresses both of them by developing highly efficient solar-driven conversion of CO2 into fuels and added-value chemicals. We propose a photosynthetic device made of two compartments (a) a photoelectrochemical cell that splits water and CO2 and generates oxygen and syngas, a mixture of H2 and CO; (b) a (photo)reactor that converts syngas into methanol and dimethylether (DME), via bi-functional heterogeneous catalysts. The proposed modular approach enables different configurations depending on the target product. The oxidation process is not limited to O2 production, but entails chlorine and small organic molecules, such as 2,5-furandicarboxylic acid, derived from the oxidation of low-cost and easily available precursors like salt water or alcohol derived biomass, respectively. Employed materials will be obtained through low energy/low temperature routes, mainly based on wet chemical procedures, such as sol-gel chemistry, mild hydrothermal processes, electrochemical processes at ambient temperature. Raw materials/precursors will not be limited by availability on a global scale, making use of organic species, silicon, earth abundant metal oxides, first row transition metals. The final target is a full photosynthetic device with 8% solar-to-syngas and 6% solar-to-DME efficiencies with three-months continuous outdoor operation. This represents a large progress with respect to the state of the art and requires an international collaboration and a multidisciplinary approach, which integrates expertise in nanomaterials preparation and characterisation by operando microscopy and spectroscopy, homogeneous and heterogeneous catalysis, photochemistry/photoelectrochemistry, PEC engineering and assessment of the environmental and socio-economic impact of the proposed technology, including life cycle assessment.

Status

SIGNED

Call topic

LC-SC3-RES-1-2019-2020

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.2. Low-cost, low-carbon energy supply
H2020-EU.3.3.2.0. Cross-cutting call topics
H2020-LC-SC3-2019-RES-TwoStages
LC-SC3-RES-1-2019-2020 Developing the next generation of renewable energy technologies