DEFACTO | Battery DEsign and manuFACTuring Optimization through multiphysic modelling

Summary
The DEFACTO project rationale is to develop a multiphysic and multiscale modelling integrated tool to better understand the material, cell and manufacturing process behaviour, therefore allowing to accelerate cell development and the R&I process. This approach will allow developing new high capacity and high voltage Li-ion cell generation 3b battery. This will increase the understanding of multiscale mechanisms and their interactions, reducing the R&D cell development resources, therefore unlocking an innovation-led cell manufacturing industry in Europe. The validated computational simulations will be a powerful tool to (i) tailor new optimum cell designs, (ii) optimise manufacturing steps of electrode processing and electrolyte filling, and (iii) shape new generation 3b materials.
This work will be based on an iterative exchange process for model development, validation and optimisation using two cell technologies for the automotive market: a commercial NMC622/G cell taken from the product portfolio from one of the DEFACTO partners and last generation prototypes (NMC811/G-Si). Characterisation tests will provide data for model development and validation, and for gaining understanding on ageing mechanisms. Sensitivity analysis will demonstrate model robustness and reduce the number of experiments needed during cell development. The optimization algorithms will enhance cell performance and durability through optimised designs and manufacturing processes. The novel fast-track cell development procedure achieved will be further extended to LMNO/G-Si prototypes. In parallel, the set of individual multiscale and multiphysic models will be compiled in an open-source simulation tool, including mechanical and electrochemical ageing with outstanding accuracy at reasonable computational cost. The project consortium, which covers the whole cell manufacturing value chain, has the required experience to ensure a smooth and high-quality delivery of the outcomes of the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/875247
Start date: 01-01-2020
End date: 31-12-2023
Total budget - Public funding: 5 988 318,00 Euro - 5 988 318,00 Euro
Cordis data

Original description

The DEFACTO project rationale is to develop a multiphysic and multiscale modelling integrated tool to better understand the material, cell and manufacturing process behaviour, therefore allowing to accelerate cell development and the R&I process. This approach will allow developing new high capacity and high voltage Li-ion cell generation 3b battery. This will increase the understanding of multiscale mechanisms and their interactions, reducing the R&D cell development resources, therefore unlocking an innovation-led cell manufacturing industry in Europe. The validated computational simulations will be a powerful tool to (i) tailor new optimum cell designs, (ii) optimise manufacturing steps of electrode processing and electrolyte filling, and (iii) shape new generation 3b materials.
This work will be based on an iterative exchange process for model development, validation and optimisation using two cell technologies for the automotive market: a commercial NMC622/G cell taken from the product portfolio from one of the DEFACTO partners and last generation prototypes (NMC811/G-Si). Characterisation tests will provide data for model development and validation, and for gaining understanding on ageing mechanisms. Sensitivity analysis will demonstrate model robustness and reduce the number of experiments needed during cell development. The optimization algorithms will enhance cell performance and durability through optimised designs and manufacturing processes. The novel fast-track cell development procedure achieved will be further extended to LMNO/G-Si prototypes. In parallel, the set of individual multiscale and multiphysic models will be compiled in an open-source simulation tool, including mechanical and electrochemical ageing with outstanding accuracy at reasonable computational cost. The project consortium, which covers the whole cell manufacturing value chain, has the required experience to ensure a smooth and high-quality delivery of the outcomes of the project.

Status

SIGNED

Call topic

LC-BAT-6-2019

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-LC-BAT-2019
LC-BAT-6-2019 Li-ion Cell Materials & Transport Modelling