SOLIFLY | Semi-SOlid-state LI-ion batteries FunctionalLY integrated in composite structures for next generation hybrid electric airliner

Summary
SOLIFLY responds in full to the challenges of the JTI-CS2-2020-CfP11-THT-11 call, “High Power density / multifunctional electrical storage solutions for aeronautic applications”, by developing and combining two structural battery concepts: (i) multi-functional materials with a high degree of integration - Coated Carbon Fibres (CCF), and (ii) multi-functional elements with a medium degree of integration - Reinforced Multilayer Stack (RMS).

The project has three vertical objectives:
• exploring and advancing a non-conventional semi-solid-state Li-ion battery material formulation suit-able for structural batteries: NMC622 (cathode), Si/C (anode) and bicontinuous polymer-ionic liquid electrolyte (BCE), i.e. NMC622|BCE|Si/C;
• enabling the functional integration of this material within the CCF and RMS concepts, upscaling them to the level of a representative aeronautic stiffened panel structure, i.e. SOLIFLY demonstrator;
• characterising the electrochemical and mechanical performance of this demonstrator.

These vertical objectives are complemented with a horizontal one: to tailor SOLIFLY to the needs of the aeronautic industry. This is achieved by factoring end-user requirements and specifications into the design process right from the start, and by including airworthiness and manufacturing criteria together with a technology roadmap and TRL scale-up strategy. The SOLIFLY demonstrator aims at achieving a gravimetric energy density at cell level between 100 and 180 Wh/kg, a nominal discharge rate of 1C, being capable of sustaining 300+ cycles at 0.1C with 90% capacity retention and achieving TRL 4 by the end of the project (2023).

SOLIFLY ultimately aims at supporting the long-term development of the European aeronautic industry, delivering the first aeronautic stiffened panel with an integrated semi-solid-state battery, and paving the way for making structural batteries a viable technology for the next generation hybrid electric airliner.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007577
Start date: 01-01-2021
End date: 31-12-2023
Total budget - Public funding: 1 355 257,00 Euro - 1 355 257,00 Euro
Cordis data

Original description

SOLIFLY responds in full to the challenges of the JTI-CS2-2020-CfP11-THT-11 call, “High Power density / multifunctional electrical storage solutions for aeronautic applications”, by developing and combining two structural battery concepts: (i) multi-functional materials with a high degree of integration - Coated Carbon Fibres (CCF), and (ii) multi-functional elements with a medium degree of integration - Reinforced Multilayer Stack (RMS).

The project has three vertical objectives:
• exploring and advancing a non-conventional semi-solid-state Li-ion battery material formulation suit-able for structural batteries: NMC622 (cathode), Si/C (anode) and bicontinuous polymer-ionic liquid electrolyte (BCE), i.e. NMC622|BCE|Si/C;
• enabling the functional integration of this material within the CCF and RMS concepts, upscaling them to the level of a representative aeronautic stiffened panel structure, i.e. SOLIFLY demonstrator;
• characterising the electrochemical and mechanical performance of this demonstrator.

These vertical objectives are complemented with a horizontal one: to tailor SOLIFLY to the needs of the aeronautic industry. This is achieved by factoring end-user requirements and specifications into the design process right from the start, and by including airworthiness and manufacturing criteria together with a technology roadmap and TRL scale-up strategy. The SOLIFLY demonstrator aims at achieving a gravimetric energy density at cell level between 100 and 180 Wh/kg, a nominal discharge rate of 1C, being capable of sustaining 300+ cycles at 0.1C with 90% capacity retention and achieving TRL 4 by the end of the project (2023).

SOLIFLY ultimately aims at supporting the long-term development of the European aeronautic industry, delivering the first aeronautic stiffened panel with an integrated semi-solid-state battery, and paving the way for making structural batteries a viable technology for the next generation hybrid electric airliner.

Status

SIGNED

Call topic

JTI-CS2-2020-CFP11-THT-11

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-CS2-CFP11-2020-01
JTI-CS2-2020-CFP11-THT-11 High power density / multifunctional electrical energy storage solutions for aeronautic applications