COSMHYC DEMO | COmbined Solution of Metal HYdride and mechanical Compressors: DEmonstration in the Hysoparc green H2 MObility project

Summary
Hydrogen mobility is gaining unprecedented momentum through the deployment of passenger & heavy-duty FCEVs. Although the number of Hydrogen Refuelling Stations (HRS) is increasing, the development of a refuelling infrastructure remains a major issue. Today, the compressor is the most challenging component in an HRS in terms of costs and reliability.
The COSMHYC consortium developed an innovative compression solution (which combines metal hydride and diaphragm compressors), specifically addressing the needs of H2 mobility. In previous research projects, comprehensive tests enabled this technology to reach TRL5. The solution is now ready for real-life validation within the COSMHYC DEMO project. The aim is to demonstrate that it is well adapted to commercial use for a wide range of H2 applications. The project includes design, construction and integration of the demonstrator in a new dual-pressure HRS supplied with green hydrogen from solar-powered water electrolysis. This HRS is a central part of HYSOPARC, a project implemented by CCTVI (a grouping of municipalities) near Tours, France, for driving regional development based on H2 technologies. The HRS will supply a fleet of 700 bar passenger vehicles, 350 bar utility vehicles and a 700 bar garbage truck. This project presents a great opportunity to demonstrate the effectiveness and versatility of the innovative compression solution.
The consortium will achieve further innovations on the compression solution followed by a 15 month demonstration phase within the HRS. The compression solution will be CE-certified & will meet latest refuelling standards, incl. for hydrogen purity. An advisory committee will support the partners to validate the solution against the needs of end-users. Market entry will be prepared through a techno-economic analysis and extensive communication, dissemination and exploitation activities, maximising the economic, environmental and societal impacts of the project.
Results, demos, etc. Show all and search (6)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007173
Start date: 01-01-2021
End date: 31-12-2024
Total budget - Public funding: 3 773 858,00 Euro - 2 999 637,00 Euro
Cordis data

Original description

Hydrogen mobility is gaining unprecedented momentum through the deployment of passenger & heavy-duty FCEVs. Although the number of Hydrogen Refuelling Stations (HRS) is increasing, the development of a refuelling infrastructure remains a major issue. Today, the compressor is the most challenging component in an HRS in terms of costs and reliability.
The COSMHYC consortium developed an innovative compression solution (which combines metal hydride and diaphragm compressors), specifically addressing the needs of H2 mobility. In previous research projects, comprehensive tests enabled this technology to reach TRL5. The solution is now ready for real-life validation within the COSMHYC DEMO project. The aim is to demonstrate that it is well adapted to commercial use for a wide range of H2 applications. The project includes design, construction and integration of the demonstrator in a new dual-pressure HRS supplied with green hydrogen from solar-powered water electrolysis. This HRS is a central part of HYSOPARC, a project implemented by CCTVI (a grouping of municipalities) near Tours, France, for driving regional development based on H2 technologies. The HRS will supply a fleet of 700 bar passenger vehicles, 350 bar utility vehicles and a 700 bar garbage truck. This project presents a great opportunity to demonstrate the effectiveness and versatility of the innovative compression solution.
The consortium will achieve further innovations on the compression solution followed by a 15 month demonstration phase within the HRS. The compression solution will be CE-certified & will meet latest refuelling standards, incl. for hydrogen purity. An advisory committee will support the partners to validate the solution against the needs of end-users. Market entry will be prepared through a techno-economic analysis and extensive communication, dissemination and exploitation activities, maximising the economic, environmental and societal impacts of the project.

Status

SIGNED

Call topic

FCH-01-8-2020

Update Date

26-10-2022
Images
No images available.
Geographical location(s)