I2MPECT | Integrated, Intelligent modular power electronic converter

Summary
Increasingly demanding requirements in the transportation industry for higher efficiency and reduced carbon footprint are leading to an ever increasing interest in electrically operated drives which offer significant benefits over their pneumatic or hydraulic counterparts. More electric aircraft technologies with fully electrical actuation and environmental conditioning systems are moving from topics of academic interest to commercial applications.
Despite the progress in power electronics and electrical drives, significant advances in power density and reliability are still required before electrical technologies are fully accepted in the aircraft industry. The thermal management of losses generated in the power converters, with the associated requirements for heavy cooling systems, is proving to be the stumbling block for further improvements in power density.
Ground-breaking advances in wide band-gap semiconductor materials are promising to deliver significant benefits to power conversion systems with unprecedented levels of power density thanks to considerably reduced losses and high temperature operation, making them ideal building blocks for aerospace power electronics.
Leveraging on some of EU best expertise in device manufacture and packaging, components integration, thermal management, converters design, reliability analysis, control and condition monitoring, as well as aircraft power systems, the proposal will demonstrate significant advances of the state of the art in power converters for harsh environments. Innovative 3D device packaging based on planar interconnect technologies with double-sided integrated cooling, will be demonstrated for wide band-gap wire-bond free power semiconductor devices. These technological breakthroughs, coupled with novel methodologies for active thermal management, lifetime testing, health management and prognosis will contribute to unprecedented levels of power density, efficiency and reliability in aerospace application
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/636170
Start date: 01-05-2015
End date: 30-04-2018
Total budget - Public funding: 7 180 892,51 Euro - 6 734 626,00 Euro
Cordis data

Original description

Increasingly demanding requirements in the transportation industry for higher efficiency and reduced carbon footprint are leading to an ever increasing interest in electrically operated drives which offer significant benefits over their pneumatic or hydraulic counterparts. More electric aircraft technologies with fully electrical actuation and environmental conditioning systems are moving from topics of academic interest to commercial applications.
Despite the progress in power electronics and electrical drives, significant advances in power density and reliability are still required before electrical technologies are fully accepted in the aircraft industry. The thermal management of losses generated in the power converters, with the associated requirements for heavy cooling systems, is proving to be the stumbling block for further improvements in power density.
Ground-breaking advances in wide band-gap semiconductor materials are promising to deliver significant benefits to power conversion systems with unprecedented levels of power density thanks to considerably reduced losses and high temperature operation, making them ideal building blocks for aerospace power electronics.
Leveraging on some of EU best expertise in device manufacture and packaging, components integration, thermal management, converters design, reliability analysis, control and condition monitoring, as well as aircraft power systems, the proposal will demonstrate significant advances of the state of the art in power converters for harsh environments. Innovative 3D device packaging based on planar interconnect technologies with double-sided integrated cooling, will be demonstrated for wide band-gap wire-bond free power semiconductor devices. These technological breakthroughs, coupled with novel methodologies for active thermal management, lifetime testing, health management and prognosis will contribute to unprecedented levels of power density, efficiency and reliability in aerospace application

Status

CLOSED

Call topic

MG-1.1-2014

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-MG-2014_TwoStages
MG-1.1-2014 Competitiveness of European Aviation through cost efficiency and innovation