Summary
AEROMIC aims at envisioning an innovative sensor technology for aeroacoustic measurements based on high performance MEMS microphones integrated as microphone arrays, and the development of a compact smart sensor surface through the integration of sensors and electronic components using vertical integration technology. The main objective of this proposal is the development of novel high performance digital wall-mounted microphone-MEMS-sensors for surface unsteady pressure and wall shear stress measurements for future noise reduced large passenger and other aircrafts. Novel miniaturized piezoelectric and piezoresistive MEMS microphones with properties exceeding the state-of-the-art in terms of bandwidth, sensitivity, dynamic range and robustness will be developed to capture the unsteady pressure fluctuations underneath the turbulent boundary layer with very high spatial and temporal resolutions in a very broad frequency range. The two MEMS microphones can be optimized for the wind-tunnel testing (WTT) and flight testing (FT) applications as required, respectively.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101007958 |
Start date: | 01-01-2021 |
End date: | 30-06-2023 |
Total budget - Public funding: | 1 749 710,00 Euro - 1 399 990,00 Euro |
Cordis data
Original description
AEROMIC aims at envisioning an innovative sensor technology for aeroacoustic measurements based on high performance MEMS microphones integrated as microphone arrays, and the development of a compact smart sensor surface through the integration of sensors and electronic components using vertical integration technology. The main objective of this proposal is the development of novel high performance digital wall-mounted microphone-MEMS-sensors for surface unsteady pressure and wall shear stress measurements for future noise reduced large passenger and other aircrafts. Novel miniaturized piezoelectric and piezoresistive MEMS microphones with properties exceeding the state-of-the-art in terms of bandwidth, sensitivity, dynamic range and robustness will be developed to capture the unsteady pressure fluctuations underneath the turbulent boundary layer with very high spatial and temporal resolutions in a very broad frequency range. The two MEMS microphones can be optimized for the wind-tunnel testing (WTT) and flight testing (FT) applications as required, respectively.Status
SIGNEDCall topic
JTI-CS2-2020-CfP11-LPA-01-88Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all