HASTECS | Hybrid Aircraft; academic reSearch on Thermal and Electrical Components and Systems

Summary
The HASTECS project aims at supporting the demonstration of radical aircraft configurations (CS-2/WP1.6) by means of models and tools development that can help the designers in assessing main benefits of architectures and power management of hybrid electric propulsion. The proposed consortium involves all competences to face the huge complexity of this process. All academic researchers will gather their expertise to optimize the overall hybrid power chain, starting with electric and thermal components up to system integration by taking into account main environmental constraints. Assessments will be integrated at the system level and will include design and analysis of main components of the hybrid power chain: electric machines and related cooling, cables, power electronics and related thermal management. This system integration will take into account the main environmental constraints, especially partial discharges due to new high power and ultra-high voltage standards. The HASTECS project proposes to reach aggressive targets with a strong increase of specific powers for the main components; We especially target to double the specific power of electric machines from 5kW/kg for 2025 to 10kW/kg for 2035 while specific powers of converters would evolve from 15kW/kg for 2025 to 25kW/kg for 2035: this expected gap, when installing 4 inverter–motor drives of 1.5MW, will lead to a weight reduction of 1.8 tons, which will offer a significant fuel burn reduction estimated at 3.5% for a short range (~300nm) flight. Additional fuel burn reduction will be obtained thanks to several technological steps as on “auxiliary sources” (batteries, fuel cells, etc) and by optimizing the overall system sizing integrating the power management. Recent assessments estimate that the reduction of total energy provided by both Gas Turbines and auxiliaries (batteries of fuel cells) of the most promising electric hybrid architecture may go beyond 20% for a 300nm regional flight!
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/715483
Start date: 01-09-2016
End date: 31-08-2021
Total budget - Public funding: 1 499 825,00 Euro - 1 499 825,00 Euro
Cordis data

Original description

The HASTECS project aims at supporting the demonstration of radical aircraft configurations (CS-2/WP1.6) by means of models and tools development that can help the designers in assessing main benefits of architectures and power management of hybrid electric propulsion. The proposed consortium involves all competences to face the huge complexity of this process. All academic researchers will gather their expertise to optimize the overall hybrid power chain, starting with electric and thermal components up to system integration by taking into account main environmental constraints. Assessments will be integrated at the system level and will include design and analysis of main components of the hybrid power chain: electric machines and related cooling, cables, power electronics and related thermal management. This system integration will take into account the main environmental constraints, especially partial discharges due to new high power and ultra-high voltage standards. The HASTECS project proposes to reach aggressive targets with a strong increase of specific powers for the main components; We especially target to double the specific power of electric machines from 5kW/kg for 2025 to 10kW/kg for 2035 while specific powers of converters would evolve from 15kW/kg for 2025 to 25kW/kg for 2035: this expected gap, when installing 4 inverter–motor drives of 1.5MW, will lead to a weight reduction of 1.8 tons, which will offer a significant fuel burn reduction estimated at 3.5% for a short range (~300nm) flight. Additional fuel burn reduction will be obtained thanks to several technological steps as on “auxiliary sources” (batteries, fuel cells, etc) and by optimizing the overall system sizing integrating the power management. Recent assessments estimate that the reduction of total energy provided by both Gas Turbines and auxiliaries (batteries of fuel cells) of the most promising electric hybrid architecture may go beyond 20% for a 300nm regional flight!

Status

CLOSED

Call topic

JTI-CS2-2015-CFP02-LPA-01-11

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.5. CLEANSKY2
H2020-EU.3.4.5.1. IADP Large Passenger Aircraft
H2020-CS2-CFP02-2015-01
JTI-CS2-2015-CFP02-LPA-01-11 Hybrid Propulsion Component Studies – Electrics