Summary
Fuel cells have promise in transport applications ranging from busses to ocean ships where they are competing will other well-established technologies. As a complicated and disruptive technology, fuel cells require specialised knowledge to integrate into devices and systems. This is a huge barrier to fuel cell use in companies that don't have existing experience with, or confidence in fuel cell technologies. The FC community needs to help system integrators develop and optimise fuel cell battery hybrid systems for varied applications.
The overall vision of this project is to develop a fully open source software-hardware (cyber-physical) tool that can be adopted as a global standard for FC system design. This platform will enable a system integrator at an SME, with limited fuel cell experience, to rapidly design a fuel cell battery hybrid powertrain for their specific application. The platform will make this development as quick as for combustion or battery powertrains and give the integrator confidence that the system will meet their performance, reliability and durability requirements.
This project will bring together a group of experienced fuel cell specialists to develop this platform (SINTEF, BALLARD and UBFC) along with several system integrators or end users of fuel cells who are leading organisations in their specific field, WESTCON (Maritime), BANKE (Heavy Duty Vehicles), VIVARAIL (Rail), SOLARIS (Busses).
The overall vision of this project is to develop a fully open source software-hardware (cyber-physical) tool that can be adopted as a global standard for FC system design. This platform will enable a system integrator at an SME, with limited fuel cell experience, to rapidly design a fuel cell battery hybrid powertrain for their specific application. The platform will make this development as quick as for combustion or battery powertrains and give the integrator confidence that the system will meet their performance, reliability and durability requirements.
This project will bring together a group of experienced fuel cell specialists to develop this platform (SINTEF, BALLARD and UBFC) along with several system integrators or end users of fuel cells who are leading organisations in their specific field, WESTCON (Maritime), BANKE (Heavy Duty Vehicles), VIVARAIL (Rail), SOLARIS (Busses).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/875087 |
Start date: | 01-01-2020 |
End date: | 30-04-2023 |
Total budget - Public funding: | 1 897 806,00 Euro - 1 897 806,00 Euro |
Cordis data
Original description
Fuel cells have promise in transport applications ranging from busses to ocean ships where they are competing will other well-established technologies. As a complicated and disruptive technology, fuel cells require specialised knowledge to integrate into devices and systems. This is a huge barrier to fuel cell use in companies that don't have existing experience with, or confidence in fuel cell technologies. The FC community needs to help system integrators develop and optimise fuel cell battery hybrid systems for varied applications.The overall vision of this project is to develop a fully open source software-hardware (cyber-physical) tool that can be adopted as a global standard for FC system design. This platform will enable a system integrator at an SME, with limited fuel cell experience, to rapidly design a fuel cell battery hybrid powertrain for their specific application. The platform will make this development as quick as for combustion or battery powertrains and give the integrator confidence that the system will meet their performance, reliability and durability requirements.
This project will bring together a group of experienced fuel cell specialists to develop this platform (SINTEF, BALLARD and UBFC) along with several system integrators or end users of fuel cells who are leading organisations in their specific field, WESTCON (Maritime), BANKE (Heavy Duty Vehicles), VIVARAIL (Rail), SOLARIS (Busses).
Status
SIGNEDCall topic
FCH-01-3-2019Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all