MAHALO | Modern ATM via Human/Automation Learning Optimisation

Summary
MAHALO asks a simple but profound question: in the emerging age of Machine Learning (ML), should we be developing automation that matches human behavior (i.e., conformal), or automation that is understandable to the human (i.e., transparent)? Further, what tradeoffs exist, in terms of controller trust, acceptance, and performance? To answer these questions, MAHALO will:
• Develop an individually-tuned ML system comprised of layered deep learning and reinforcement models, trained on controller performance (context-specific solutions), strategies (eye tracking), and physiological data, which learns to solve ATC conflicts;
• Couple this to an enhanced en-route CD&R prototype display to present machine rationale with regards to ML output;
• Evaluate in realtime simulations the relative impact of ML conformance, transparency, and traffic complexity, on controller understanding, trust, acceptance, workload, and performance; and
• Define a framework to guide design of future AI systems, including guidance on the effects of conformance, transparency, complexity, and non-nominal conditions.
Building on the collective experience within the team, past research, and recent advances in the areas of ML and ecological interface design (EID), MAHALO will take a bold step forward: to create a system that learns from the individual operator, but also provides the operator insight into what the machine has learnt. Several models will be trained and evaluated to reflect a continuum from individually-matched to group-average. Most recent work in areas of automation transparency, Explainable AI (XAI) and ML interpretability will be explored to afford understanding of ML advisories. The user interface will present ML outputs, in terms of: current and future (what-if) traffic patterns; intended resolution maneuvers; and rule-based rationale. The project’s output will add knowledge and design principles on how AI and transparency can be used to improve ATM performance, capacity, and safety.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892970
Start date: 01-06-2020
End date: 30-11-2022
Total budget - Public funding: 997 212,00 Euro - 997 212,00 Euro
Cordis data

Original description

MAHALO asks a simple but profound question: in the emerging age of Machine Learning (ML), should we be developing automation that matches human behavior (i.e., conformal), or automation that is understandable to the human (i.e., transparent)? Further, what tradeoffs exist, in terms of controller trust, acceptance, and performance? To answer these questions, MAHALO will:
• Develop an individually-tuned ML system comprised of layered deep learning and reinforcement models, trained on controller performance (context-specific solutions), strategies (eye tracking), and physiological data, which learns to solve ATC conflicts;
• Couple this to an enhanced en-route CD&R prototype display to present machine rationale with regards to ML output;
• Evaluate in realtime simulations the relative impact of ML conformance, transparency, and traffic complexity, on controller understanding, trust, acceptance, workload, and performance; and
• Define a framework to guide design of future AI systems, including guidance on the effects of conformance, transparency, complexity, and non-nominal conditions.
Building on the collective experience within the team, past research, and recent advances in the areas of ML and ecological interface design (EID), MAHALO will take a bold step forward: to create a system that learns from the individual operator, but also provides the operator insight into what the machine has learnt. Several models will be trained and evaluated to reflect a continuum from individually-matched to group-average. Most recent work in areas of automation transparency, Explainable AI (XAI) and ML interpretability will be explored to afford understanding of ML advisories. The user interface will present ML outputs, in terms of: current and future (what-if) traffic patterns; intended resolution maneuvers; and rule-based rationale. The project’s output will add knowledge and design principles on how AI and transparency can be used to improve ATM performance, capacity, and safety.

Status

CLOSED

Call topic

SESAR-ER4-01-2019

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.7. SESAR JU
H2020-EU.3.4.7.0. Cross-cutting call topics
H2020-SESAR-2019-2
SESAR-ER4-01-2019 Digitalisation and Automation principles for ATM