CHYLA | Credible HYbrid eLectric Aircraft

Summary
"CHYLA - Credible HYbrid eLectric Aircraft aims to develop a landscape of opportunities and limitations of key radical hybrid-electric technologies (battery electric, fuel cell, but also considering non-drop in fuel technologies such as Hydrogen-H2, Liquified Natural Gas) and the ""switching points"" associated to scaling such technologies between different aircraft classes. These classes are: General Aviation, commuter aircraft, regional aircraft, short-medium range and large passenger aircraft, where the focus is on up-scaling the key-technologies. This landscape of design solutions is supported through a ""credibility assessment"" of assumptions underlying the application of these radical technologies, in different technology scenarios. Additionally, the impact of radical solutions will be assessed in terms of the viability of operations, economics and safety (certification). To achieve this, the project will use an approach of integrating novel airframe technologies with a hybrid electric energy network in order to apply credibility-based multidisciplinary design optimization (MDO). In order to provide feasible starting points for this landscape and the MDO, an integrated aircraft design approach will be used with physics-based design methods for the subsystem technologies."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007715
Start date: 01-12-2020
End date: 31-05-2023
Total budget - Public funding: 837 328,00 Euro - 837 328,00 Euro
Cordis data

Original description

"CHYLA - Credible HYbrid eLectric Aircraft aims to develop a landscape of opportunities and limitations of key radical hybrid-electric technologies (battery electric, fuel cell, but also considering non-drop in fuel technologies such as Hydrogen-H2, Liquified Natural Gas) and the ""switching points"" associated to scaling such technologies between different aircraft classes. These classes are: General Aviation, commuter aircraft, regional aircraft, short-medium range and large passenger aircraft, where the focus is on up-scaling the key-technologies. This landscape of design solutions is supported through a ""credibility assessment"" of assumptions underlying the application of these radical technologies, in different technology scenarios. Additionally, the impact of radical solutions will be assessed in terms of the viability of operations, economics and safety (certification). To achieve this, the project will use an approach of integrating novel airframe technologies with a hybrid electric energy network in order to apply credibility-based multidisciplinary design optimization (MDO). In order to provide feasible starting points for this landscape and the MDO, an integrated aircraft design approach will be used with physics-based design methods for the subsystem technologies."

Status

CLOSED

Call topic

JTI-CS2-2020-CFP11-THT-14

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-CS2-CFP11-2020-01
JTI-CS2-2020-CFP11-THT-14 Scalability and limitations of Hybrid Electric concepts up to large commercial aircraft
JTI-CS2-2020-CFP11-THT-14 Scalability and limitations of Hybrid Electric concepts up to large commercial aircraft