Summary
This project proposes an innovative Digital Information Management (DIM) concept, i.e. the AICHAIN solution, that aims at enabling the cyber-secured exploitation of large private data sets that belong to different stakeholders and that contain valuable information for ATM operations. To overcome the stakeholders’ reluctance to share sensitive data, the exploitation will not be performed by exchanging the data itself but by articulating an advanced privacy-preserving federated learning architecture in which neither the training data nor the training model need to be exposed. This will be possible thanks to the innovative combination of two emerging DIM technologies: Federated Machine Learning (FedML) and Blockchain technologies.
The potential benefits of the new proposed DIM concept will be explored through ATM research use cases related to advanced Demand Capacity Balancing (DCB) predictive models of the Network Manager (NM), whose prediction performance is expected to significantly improve thanks to the exploitation of relevant operational private data from Airspace Users. The accuracy of the new DCB predictive models augmented with real operational data accessed through the AICHAIN solution will be benchmarked against the machine learning models for DCB that are currently in use or under research by NM.
The project will also address the exploration of governance and incentives mechanisms as part of the AICHAIN solution concept architecture, to facilitate the adoption of the concept and the alignment of interests of the key stakeholders (especially of the data owners). The design of advanced governance & incentives mechanisms, which could be implemented using the mechanism of “smart contracts” available in the toolset of Blockchain, will be complemented with a theoretical identification of data exploitation benefits and with discussions in workshops participated by external experts.
The potential benefits of the new proposed DIM concept will be explored through ATM research use cases related to advanced Demand Capacity Balancing (DCB) predictive models of the Network Manager (NM), whose prediction performance is expected to significantly improve thanks to the exploitation of relevant operational private data from Airspace Users. The accuracy of the new DCB predictive models augmented with real operational data accessed through the AICHAIN solution will be benchmarked against the machine learning models for DCB that are currently in use or under research by NM.
The project will also address the exploration of governance and incentives mechanisms as part of the AICHAIN solution concept architecture, to facilitate the adoption of the concept and the alignment of interests of the key stakeholders (especially of the data owners). The design of advanced governance & incentives mechanisms, which could be implemented using the mechanism of “smart contracts” available in the toolset of Blockchain, will be complemented with a theoretical identification of data exploitation benefits and with discussions in workshops participated by external experts.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/894162 |
Start date: | 01-07-2020 |
End date: | 31-12-2022 |
Total budget - Public funding: | 1 757 491,00 Euro - 996 505,00 Euro |
Cordis data
Original description
This project proposes an innovative Digital Information Management (DIM) concept, i.e. the AICHAIN solution, that aims at enabling the cyber-secured exploitation of large private data sets that belong to different stakeholders and that contain valuable information for ATM operations. To overcome the stakeholders’ reluctance to share sensitive data, the exploitation will not be performed by exchanging the data itself but by articulating an advanced privacy-preserving federated learning architecture in which neither the training data nor the training model need to be exposed. This will be possible thanks to the innovative combination of two emerging DIM technologies: Federated Machine Learning (FedML) and Blockchain technologies.The potential benefits of the new proposed DIM concept will be explored through ATM research use cases related to advanced Demand Capacity Balancing (DCB) predictive models of the Network Manager (NM), whose prediction performance is expected to significantly improve thanks to the exploitation of relevant operational private data from Airspace Users. The accuracy of the new DCB predictive models augmented with real operational data accessed through the AICHAIN solution will be benchmarked against the machine learning models for DCB that are currently in use or under research by NM.
The project will also address the exploration of governance and incentives mechanisms as part of the AICHAIN solution concept architecture, to facilitate the adoption of the concept and the alignment of interests of the key stakeholders (especially of the data owners). The design of advanced governance & incentives mechanisms, which could be implemented using the mechanism of “smart contracts” available in the toolset of Blockchain, will be complemented with a theoretical identification of data exploitation benefits and with discussions in workshops participated by external experts.
Status
CLOSEDCall topic
SESAR-ER4-04-2019Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping