Summary
The MISSION Consortium will bring together world-leading expertise in the field of aircraft electric power systems, power line communication systems, solid-state power electronics technologies, metaphysical modelling and simulation, control, validation testing and integration, to design, develop, manufacture and validate the advanced electrical power distribution system (EPDS) based on Multifunctional Power Network with Electrical Switching. This will be a key component in the creation and demonstration of the Multifunctional Fuselage demonstrator being developed within Clean Sky 2 LPA IADP platform 2.
The technical areas of work will cover advanced architectures for the Electric Power Systems (EPS) architecture including their design, control and analysis, Power Electronic Switches based on Solid-State Devices, onboard communication networks, power line communication systems, and Power Line Communication (PLC). The technical work will be completed with advanced methods in model-based design, as well as multi-physic modelling and simulation, together with world-recognised expertise in manufacturing, testing and qualification of EPDS for aerospace applications to. This will enable a step changebreakthrough in the design and development of integrated electrical power bus and communication system (IPBCS) for future aircraft platforms. by introducing highly innovative technological solutions leading to a substantial reduction of overall weight, making aircraft more efficient, hence reducing fuel burn and contributing towards more efficient, greener aviation.
The technical areas of work will cover advanced architectures for the Electric Power Systems (EPS) architecture including their design, control and analysis, Power Electronic Switches based on Solid-State Devices, onboard communication networks, power line communication systems, and Power Line Communication (PLC). The technical work will be completed with advanced methods in model-based design, as well as multi-physic modelling and simulation, together with world-recognised expertise in manufacturing, testing and qualification of EPDS for aerospace applications to. This will enable a step changebreakthrough in the design and development of integrated electrical power bus and communication system (IPBCS) for future aircraft platforms. by introducing highly innovative technological solutions leading to a substantial reduction of overall weight, making aircraft more efficient, hence reducing fuel burn and contributing towards more efficient, greener aviation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/831914 |
Start date: | 01-06-2019 |
End date: | 30-11-2022 |
Total budget - Public funding: | 1 209 287,00 Euro - 1 116 051,00 Euro |
Cordis data
Original description
The MISSION Consortium will bring together world-leading expertise in the field of aircraft electric power systems, power line communication systems, solid-state power electronics technologies, metaphysical modelling and simulation, control, validation testing and integration, to design, develop, manufacture and validate the advanced electrical power distribution system (EPDS) based on Multifunctional Power Network with Electrical Switching. This will be a key component in the creation and demonstration of the Multifunctional Fuselage demonstrator being developed within Clean Sky 2 LPA IADP platform 2.The technical areas of work will cover advanced architectures for the Electric Power Systems (EPS) architecture including their design, control and analysis, Power Electronic Switches based on Solid-State Devices, onboard communication networks, power line communication systems, and Power Line Communication (PLC). The technical work will be completed with advanced methods in model-based design, as well as multi-physic modelling and simulation, together with world-recognised expertise in manufacturing, testing and qualification of EPDS for aerospace applications to. This will enable a step changebreakthrough in the design and development of integrated electrical power bus and communication system (IPBCS) for future aircraft platforms. by introducing highly innovative technological solutions leading to a substantial reduction of overall weight, making aircraft more efficient, hence reducing fuel burn and contributing towards more efficient, greener aviation.
Status
CLOSEDCall topic
JTI-CS2-2018-CfP08-LPA-02-26Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all