Summary
More Electric and Connected Aircraft (MECA) is one of the most promising enablers to reach Flightpath 2050. But MECA asks for more electrical systems, which exchange more data which can be safety critical, and consume more electrical power leading to higher thermal dissipation. This leads to complexity, weight penalty and increased exposure to intended (cybersecurity) and unintended (ElectroMagnetic Compatibility) interference. Overcoming these barriers requires an interdisciplinary cooperation and, in this context, the ADENEAS project emerged, aiming at paving the way for a safe, light, self-configuring, autonomous and modular power and data distribution network that is scalable to all aircraft sizes. To achieve this long-term objective, ADENEAS will define new architecture concepts, develop advanced Artificial Intelligence-based design tools, enabling technologies for intra-aircraft data communication and for power network and a cooling system. The project will also demonstrate the integration of the data and power network and cooling system, initiate standardisation activities and ensure commercial viability.
To achieve these objectives, ADENEAS will start from solid foundation of partner’s background, previous and ongoing R&D activities and will implement a stepwise approach from the definition of requirements and reference case (for small, medium and large aircraft) up to the assessment and evaluation of the developed, tested and demonstrated technologies. This includes strong involvement of an Industrial Advisory Board as well as standardisation perspective.
The ADENEAS future proof power and data network, scalable to all aircraft size, will support the Flightpath 2050 objective by allowing to save 0.7% block fuel burn and >156,000 kg of CO2 emitted per aircraft per year and secondary by optimizing maintenance and providing novel technologies to be deployed for increased passenger experience.
To achieve these objectives, ADENEAS will start from solid foundation of partner’s background, previous and ongoing R&D activities and will implement a stepwise approach from the definition of requirements and reference case (for small, medium and large aircraft) up to the assessment and evaluation of the developed, tested and demonstrated technologies. This includes strong involvement of an Industrial Advisory Board as well as standardisation perspective.
The ADENEAS future proof power and data network, scalable to all aircraft size, will support the Flightpath 2050 objective by allowing to save 0.7% block fuel burn and >156,000 kg of CO2 emitted per aircraft per year and secondary by optimizing maintenance and providing novel technologies to be deployed for increased passenger experience.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101006728 |
Start date: | 01-02-2021 |
End date: | 30-04-2024 |
Total budget - Public funding: | 4 018 012,00 Euro - 4 018 012,00 Euro |
Cordis data
Original description
More Electric and Connected Aircraft (MECA) is one of the most promising enablers to reach Flightpath 2050. But MECA asks for more electrical systems, which exchange more data which can be safety critical, and consume more electrical power leading to higher thermal dissipation. This leads to complexity, weight penalty and increased exposure to intended (cybersecurity) and unintended (ElectroMagnetic Compatibility) interference. Overcoming these barriers requires an interdisciplinary cooperation and, in this context, the ADENEAS project emerged, aiming at paving the way for a safe, light, self-configuring, autonomous and modular power and data distribution network that is scalable to all aircraft sizes. To achieve this long-term objective, ADENEAS will define new architecture concepts, develop advanced Artificial Intelligence-based design tools, enabling technologies for intra-aircraft data communication and for power network and a cooling system. The project will also demonstrate the integration of the data and power network and cooling system, initiate standardisation activities and ensure commercial viability.To achieve these objectives, ADENEAS will start from solid foundation of partner’s background, previous and ongoing R&D activities and will implement a stepwise approach from the definition of requirements and reference case (for small, medium and large aircraft) up to the assessment and evaluation of the developed, tested and demonstrated technologies. This includes strong involvement of an Industrial Advisory Board as well as standardisation perspective.
The ADENEAS future proof power and data network, scalable to all aircraft size, will support the Flightpath 2050 objective by allowing to save 0.7% block fuel burn and >156,000 kg of CO2 emitted per aircraft per year and secondary by optimizing maintenance and providing novel technologies to be deployed for increased passenger experience.
Status
SIGNEDCall topic
MG-3-4-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all