Summary
The improvement potential in conventional aero engines will be realized over the next decades. While a number of evolutionary improvements remain, the limits to thermal efficiency are becoming visible in terms of material constraints, NOx emissions and engine operability. The propulsive efficiency improvement potential is also small and constrained by transmission losses, nacelle and intake drag, engine weight and - for open-rotors - by noise and integration challenges. If the continuous increase in air travel is to become sustainable - as the ACARE 2020 and Flightpath 2050 goals require - then a revolutionary step change in aircraft technology is required.
Current aircraft/engine conceptual design methodologies are centered on the disciplines of aerodynamics, structures, and gas turbine performance. Key aspects of unconventional concepts - such as hybrid electric propulsion - are thus hard to capture within existing design tools.
TRADE proposes the integration of three new aspects into aircraft/engine conceptual design. First, an advanced structural model quantifies the impact of the installation of heavy equipment on the sizing of the aircraft structure. Second, refined on-board system models capture design and performance trades in electric power systems, gas turbines, and thermal management. Finally, an operational and mission model enables flight dynamic analyses and an assessment of handling qualities of diverging aircraft configurations. All improvements build on extensive model assets of the consortium members.
TRADE also delivers the integration of these new aspects into a conceptual design environment. The environment is suitable for the design of hybrid electric aircraft, and the consortium will apply it for configuration assessment and optimization at sub-system as well as whole-aircraft level.
TRADE fulfills all the topic requirements of JTI-CS2-2016-CFP04-LPA-01-28, and opens the path to a technological breakthrough in the aeronautics community.
Current aircraft/engine conceptual design methodologies are centered on the disciplines of aerodynamics, structures, and gas turbine performance. Key aspects of unconventional concepts - such as hybrid electric propulsion - are thus hard to capture within existing design tools.
TRADE proposes the integration of three new aspects into aircraft/engine conceptual design. First, an advanced structural model quantifies the impact of the installation of heavy equipment on the sizing of the aircraft structure. Second, refined on-board system models capture design and performance trades in electric power systems, gas turbines, and thermal management. Finally, an operational and mission model enables flight dynamic analyses and an assessment of handling qualities of diverging aircraft configurations. All improvements build on extensive model assets of the consortium members.
TRADE also delivers the integration of these new aspects into a conceptual design environment. The environment is suitable for the design of hybrid electric aircraft, and the consortium will apply it for configuration assessment and optimization at sub-system as well as whole-aircraft level.
TRADE fulfills all the topic requirements of JTI-CS2-2016-CFP04-LPA-01-28, and opens the path to a technological breakthrough in the aeronautics community.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/755458 |
Start date: | 01-09-2017 |
End date: | 30-06-2020 |
Total budget - Public funding: | 1 500 000,00 Euro - 1 500 000,00 Euro |
Cordis data
Original description
The improvement potential in conventional aero engines will be realized over the next decades. While a number of evolutionary improvements remain, the limits to thermal efficiency are becoming visible in terms of material constraints, NOx emissions and engine operability. The propulsive efficiency improvement potential is also small and constrained by transmission losses, nacelle and intake drag, engine weight and - for open-rotors - by noise and integration challenges. If the continuous increase in air travel is to become sustainable - as the ACARE 2020 and Flightpath 2050 goals require - then a revolutionary step change in aircraft technology is required.Current aircraft/engine conceptual design methodologies are centered on the disciplines of aerodynamics, structures, and gas turbine performance. Key aspects of unconventional concepts - such as hybrid electric propulsion - are thus hard to capture within existing design tools.
TRADE proposes the integration of three new aspects into aircraft/engine conceptual design. First, an advanced structural model quantifies the impact of the installation of heavy equipment on the sizing of the aircraft structure. Second, refined on-board system models capture design and performance trades in electric power systems, gas turbines, and thermal management. Finally, an operational and mission model enables flight dynamic analyses and an assessment of handling qualities of diverging aircraft configurations. All improvements build on extensive model assets of the consortium members.
TRADE also delivers the integration of these new aspects into a conceptual design environment. The environment is suitable for the design of hybrid electric aircraft, and the consortium will apply it for configuration assessment and optimization at sub-system as well as whole-aircraft level.
TRADE fulfills all the topic requirements of JTI-CS2-2016-CFP04-LPA-01-28, and opens the path to a technological breakthrough in the aeronautics community.
Status
CLOSEDCall topic
JTI-CS2-2016-CFP04-LPA-01-28Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all