VENUS | inVestigation of distributEd propulsion Noise and its mitigation through wind tUnnel experiments and numerical Simulations

Summary
Distributed Electric Propulsion (DEP), is one of the propulsion configurations that, taking advantage from the Distributed Propulsion concept, is believed to exploit the benefits of electrical engines to drastically reduce fuel consumption and emissions. In the framework of the topic JTI-CS2-2018-CFP10-THT-08, the proposal VENUS will have the objective to understand the physics behind the aeroacoustics of DEP through a deep theoretical, experimental and numerical study. Appropriate numerical procedures for DEP noise assessment will be set-up and experimental data-set obtained in dedicated wind tunnel tests, will be used both as experimental DEP noise validation reference and for providing support to the identification of the main parameters affecting DEP noise. Technologies for DEP noise reduction will be studied as well and tested experimentally. From the technical standpoint, the VENUS consortium will support the model design, manufacturing and integration by realizing a representative test article for WT parametric aeroacoustic tests, able to allow for configuration changes, in terms of engine-wing and engine-engine installation configurations, and to test the selected noise mitigation technologies. The consortium will develop methods and tools enabling a concurrent aerodynamic and aeroacoustic design of DEP configuration aircraft. The final step will consist in the experimental-numerical assessment of the numerical models. As a practical achievement, the study will support the design of a new regional aircraft configuration, in terms of wing and engines’ installation, to target a DEP which is optimized in terms of aerodynamic and aeroacoustic performance. It is pointed out that all the produced models, data and documents will be open access for other institutions, with the objective to establish an “open test-case” for the whole European scientific community, unique in the aircraft design landscape.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/886019
Start date: 01-04-2020
End date: 30-09-2023
Total budget - Public funding: 2 282 875,00 Euro - 2 282 875,00 Euro
Cordis data

Original description

Distributed Electric Propulsion (DEP), is one of the propulsion configurations that, taking advantage from the Distributed Propulsion concept, is believed to exploit the benefits of electrical engines to drastically reduce fuel consumption and emissions. In the framework of the topic JTI-CS2-2018-CFP10-THT-08, the proposal VENUS will have the objective to understand the physics behind the aeroacoustics of DEP through a deep theoretical, experimental and numerical study. Appropriate numerical procedures for DEP noise assessment will be set-up and experimental data-set obtained in dedicated wind tunnel tests, will be used both as experimental DEP noise validation reference and for providing support to the identification of the main parameters affecting DEP noise. Technologies for DEP noise reduction will be studied as well and tested experimentally. From the technical standpoint, the VENUS consortium will support the model design, manufacturing and integration by realizing a representative test article for WT parametric aeroacoustic tests, able to allow for configuration changes, in terms of engine-wing and engine-engine installation configurations, and to test the selected noise mitigation technologies. The consortium will develop methods and tools enabling a concurrent aerodynamic and aeroacoustic design of DEP configuration aircraft. The final step will consist in the experimental-numerical assessment of the numerical models. As a practical achievement, the study will support the design of a new regional aircraft configuration, in terms of wing and engines’ installation, to target a DEP which is optimized in terms of aerodynamic and aeroacoustic performance. It is pointed out that all the produced models, data and documents will be open access for other institutions, with the objective to establish an “open test-case” for the whole European scientific community, unique in the aircraft design landscape.

Status

SIGNED

Call topic

JTI-CS2-2019-CFP10-THT-08

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.5. CLEANSKY2
H2020-EU.3.4.5.10.
H2020-CS2-CFP10-2019-01
JTI-CS2-2019-CFP10-THT-08 Experimental and numerical noise assessment of distributed propulsion configurations