TailSurf | Rear End Aerodynamic and Aeroelastic Studies

Summary
TailSurf will contribute to the design, testing, integration and optimisation of ARE for the improvement of performance at component level of 20% weight reduction, 20% recurring cost reduction and 50% lead time reduction. It is also expected that 1.5% reduction of fuel burn at aircraft level will be achieved from the optimal rear end configurations.

The specific objectives and the associated work packages to achieve this aim are shown below.
1. To define and test technologies and shapes to delay the flow separation, leading to stall of the tail surface and saturation of the control surfaces (WP1 – deliverable DX in MX). Thee control effect of these technologies and devices will be verified by both wind tunnel experiments and computational fluid dynamics (CFD) on high-performance computing (HPC) facilities.
2. To study means and concepts to increase aeroelastic efficiency of tail surfaces using computational and experimental means.
3. To study the integration of all technologies on an advanced rear-end configuration and numerical prediction and post-test calibration.
4. To investigate the applicability of plasma actuators (DBDs) for de-icing and delaying stall experimentally.
5. To carry out management and administration required over the course of the whole project. It will serve to administer and manage the project in accordance with the Clean Sky 2 Management Manual, including the management of risks, finances and administrative tasks. It will also be essential to promote the project results and scientific and technical outcomes through targeted dissemination and communication activities
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/864290
Start date: 01-10-2019
End date: 31-03-2023
Total budget - Public funding: 1 465 541,00 Euro - 1 465 541,00 Euro
Cordis data

Original description

TailSurf will contribute to the design, testing, integration and optimisation of ARE for the improvement of performance at component level of 20% weight reduction, 20% recurring cost reduction and 50% lead time reduction. It is also expected that 1.5% reduction of fuel burn at aircraft level will be achieved from the optimal rear end configurations.

The specific objectives and the associated work packages to achieve this aim are shown below.
1. To define and test technologies and shapes to delay the flow separation, leading to stall of the tail surface and saturation of the control surfaces (WP1 – deliverable DX in MX). Thee control effect of these technologies and devices will be verified by both wind tunnel experiments and computational fluid dynamics (CFD) on high-performance computing (HPC) facilities.
2. To study means and concepts to increase aeroelastic efficiency of tail surfaces using computational and experimental means.
3. To study the integration of all technologies on an advanced rear-end configuration and numerical prediction and post-test calibration.
4. To investigate the applicability of plasma actuators (DBDs) for de-icing and delaying stall experimentally.
5. To carry out management and administration required over the course of the whole project. It will serve to administer and manage the project in accordance with the Clean Sky 2 Management Manual, including the management of risks, finances and administrative tasks. It will also be essential to promote the project results and scientific and technical outcomes through targeted dissemination and communication activities

Status

CLOSED

Call topic

JTI-CS2-2018-CfP09-LPA-01-63

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.5. CLEANSKY2
H2020-EU.3.4.5.1. IADP Large Passenger Aircraft
H2020-CS2-CFP09-2018-02
JTI-CS2-2018-CfP09-LPA-01-63 Rear End Aerodynamic and Aeroelastic Studies