TORNADO | innovaTive disbOnd aRrest features for loNg thermoplAstic welDed jOints

Summary
The aerospace industry currently has a need for lightweight, complex composite structures to make their way into operational use. Changes in the regulatory landscape and demands for reduced emissions, coupled with the need to optimize Revenue Passenger Kilometers (RPK), have driven research efforts into cleaner, lighter, and more efficient aircraft designs. A key approach to reducing emissions is minimizing weight: by reducing weight, fuel usage drops, leading to a reduction in overall emissions. This requires that traditional materials such as steel, aluminum, and even titanium be replaced with lighter, high-performance materials. High Performance Thermoplastics (HPTP) are an excellent solution to the issues of recyclability, light weight, high performance, and repairability. HPTP composites offer compelling advantages over metal components: improved working life, lower weight, reduced fuel consumption, and longer service intervals.
The Large Passenger Aircraft (LPA) Platform 2–Multifunctional Fuselage Demonstrator (MFFD) will employ new combinations of airframe structures, cabin/cargo, and system elements using advanced materials, notably HPTP composites. The MFFD is focused on achieving significant cost and weight reductions, coupled with high production rates. The use of thermoplastic welding can lead to significant benefits, but in order to obtain certification under EASA and CS 23 rules, disbond arrest features must be integrated into the structure.
The TORNADO project will develop a novel technology, Inductive Low-Shear Friction Stir Riveting, as well several other fallback alternatives, in order to provide a high-performance solution for disbond arrest in the MFFD.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007494
Start date: 01-01-2021
End date: 30-06-2023
Total budget - Public funding: 864 125,00 Euro - 746 000,00 Euro
Cordis data

Original description

The aerospace industry currently has a need for lightweight, complex composite structures to make their way into operational use. Changes in the regulatory landscape and demands for reduced emissions, coupled with the need to optimize Revenue Passenger Kilometers (RPK), have driven research efforts into cleaner, lighter, and more efficient aircraft designs. A key approach to reducing emissions is minimizing weight: by reducing weight, fuel usage drops, leading to a reduction in overall emissions. This requires that traditional materials such as steel, aluminum, and even titanium be replaced with lighter, high-performance materials. High Performance Thermoplastics (HPTP) are an excellent solution to the issues of recyclability, light weight, high performance, and repairability. HPTP composites offer compelling advantages over metal components: improved working life, lower weight, reduced fuel consumption, and longer service intervals.
The Large Passenger Aircraft (LPA) Platform 2–Multifunctional Fuselage Demonstrator (MFFD) will employ new combinations of airframe structures, cabin/cargo, and system elements using advanced materials, notably HPTP composites. The MFFD is focused on achieving significant cost and weight reductions, coupled with high production rates. The use of thermoplastic welding can lead to significant benefits, but in order to obtain certification under EASA and CS 23 rules, disbond arrest features must be integrated into the structure.
The TORNADO project will develop a novel technology, Inductive Low-Shear Friction Stir Riveting, as well several other fallback alternatives, in order to provide a high-performance solution for disbond arrest in the MFFD.

Status

SIGNED

Call topic

JTI-CS2-2020-CfP11-LPA-02-35

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-CS2-CFP11-2020-01
JTI-CS2-2020-CfP11-LPA-02-35 Innovative disbond arrest features for long thermoplastic welded joints