Summary
The GRACE project aims at development of surface mount technology (SMT) components for mm-wave (mmW) frequencies, with particular focus on radar systems in the W-band.
Low-cost high-performance radars are critical for future Enhanced Flight Vison System (EFVS) combining IR sensors and a mmW radar.
Key radar components are Power Amplifier (PAs) and Signal Sources (SSs), two functionalities that require high power. The most promising technology to deliver the required power levels in an area-effective package with potential to be cost-effective in volume production is a short-gate length GaN HEMT monolithic microwave integrated circuit (MMIC) technology. The GRACE project aims at utilizing the D01GH and the D006GHG processes from OMMIC, which are two only commercially open European MMIC processes with capability of delivering sufficient gain in the W frequency band.
The GRACE project also aims at packaging the designed MMICs using a fan-out wafer level (FOWL) packaging approach offered by Fraunhofer IZM. FOWL packaging (FOWLP) is one of the latest packaging trends in microelectronics with advantages such as significant package miniaturization, substrate-less package, lower thermal resistance, and higher performance with lower loss and low parasitic coupling
The specific objectives of the GRACE project are:
*Design of a 93-100 GHz Power Amplifier (PA) MMIC with an output power in the range of 500mW to 1W
*Design of a signal-source MMIC covering 93-100 GHz with state-of-the art far-carrier phase noise performance
*Development of a FOWL packaging flow for the PA MMIC
*Development of a FOWL packaging flow for the signal source MMIC
Low-cost high-performance radars are critical for future Enhanced Flight Vison System (EFVS) combining IR sensors and a mmW radar.
Key radar components are Power Amplifier (PAs) and Signal Sources (SSs), two functionalities that require high power. The most promising technology to deliver the required power levels in an area-effective package with potential to be cost-effective in volume production is a short-gate length GaN HEMT monolithic microwave integrated circuit (MMIC) technology. The GRACE project aims at utilizing the D01GH and the D006GHG processes from OMMIC, which are two only commercially open European MMIC processes with capability of delivering sufficient gain in the W frequency band.
The GRACE project also aims at packaging the designed MMICs using a fan-out wafer level (FOWL) packaging approach offered by Fraunhofer IZM. FOWL packaging (FOWLP) is one of the latest packaging trends in microelectronics with advantages such as significant package miniaturization, substrate-less package, lower thermal resistance, and higher performance with lower loss and low parasitic coupling
The specific objectives of the GRACE project are:
*Design of a 93-100 GHz Power Amplifier (PA) MMIC with an output power in the range of 500mW to 1W
*Design of a signal-source MMIC covering 93-100 GHz with state-of-the art far-carrier phase noise performance
*Development of a FOWL packaging flow for the PA MMIC
*Development of a FOWL packaging flow for the signal source MMIC
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/821270 |
Start date: | 01-11-2018 |
End date: | 31-08-2021 |
Total budget - Public funding: | 1 742 815,00 Euro - 1 742 815,00 Euro |
Cordis data
Original description
The GRACE project aims at development of surface mount technology (SMT) components for mm-wave (mmW) frequencies, with particular focus on radar systems in the W-band.Low-cost high-performance radars are critical for future Enhanced Flight Vison System (EFVS) combining IR sensors and a mmW radar.
Key radar components are Power Amplifier (PAs) and Signal Sources (SSs), two functionalities that require high power. The most promising technology to deliver the required power levels in an area-effective package with potential to be cost-effective in volume production is a short-gate length GaN HEMT monolithic microwave integrated circuit (MMIC) technology. The GRACE project aims at utilizing the D01GH and the D006GHG processes from OMMIC, which are two only commercially open European MMIC processes with capability of delivering sufficient gain in the W frequency band.
The GRACE project also aims at packaging the designed MMICs using a fan-out wafer level (FOWL) packaging approach offered by Fraunhofer IZM. FOWL packaging (FOWLP) is one of the latest packaging trends in microelectronics with advantages such as significant package miniaturization, substrate-less package, lower thermal resistance, and higher performance with lower loss and low parasitic coupling
The specific objectives of the GRACE project are:
*Design of a 93-100 GHz Power Amplifier (PA) MMIC with an output power in the range of 500mW to 1W
*Design of a signal-source MMIC covering 93-100 GHz with state-of-the art far-carrier phase noise performance
*Development of a FOWL packaging flow for the PA MMIC
*Development of a FOWL packaging flow for the signal source MMIC
Status
CLOSEDCall topic
JTI-CS2-2017-CfP07-SYS-01-10Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all