ALTERNATE | ASSESSMENT ON ALTERNATIVE AVIATION FUELS DEVELOPMENT

Summary
It is widely accepted that the use of sustainable fuels, with a Life-cycle carbon footprint substantially smaller than the present fossil-origin kerosene, is the most promising and probably the only short-medium time measure allowing the aviation industry to reduce its emissions, helping to reach 2015 Paris Agreement targets.
During the last 10 years, many tests have been done with different drop-in organic products with high level of success. Present commercial aircraft engines are certified for using a mix of up to 50% of some of these new products. More additional research is still going on the convenience of developing new feedstocks and on their potential climate change impact.
The International Civil Aviation Organization (ICAO) is now discussing the best way to standardise the Life-cycle Analysis (LCA) of the most readily available products and what is the best certification procedures. This process is needed in order to apply CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation), approved in October 2016, intending to stabilize international aviation carbon dioxide (CO2) emissions at 2020 levels.
However, none of those new organic-origin fuels has proved the means to be produced in an economically competitive way versus fossil kerosene. It is generally accepted that some type of incentive mechanism needs to be implemented to make sustainable fuel attractive for the airlines in addition to the CORSIA and European Trading System provisions.
As the result of this Chinese and European cooperation proposal, some possibilities appear for a wider aviation sustainable fuel utilisation, considering both technical and economic areas, including the possible use of more feedstocks and production pathways than the existing ones. New fuel candidates will be evaluated in this project according to improved modelling methods, considering LCA optimization, climate change effects and technical and economic consequences of their use.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/875538
Start date: 01-01-2020
End date: 31-12-2022
Total budget - Public funding: 2 600 387,00 Euro - 2 600 387,00 Euro
Cordis data

Original description

It is widely accepted that the use of sustainable fuels, with a Life-cycle carbon footprint substantially smaller than the present fossil-origin kerosene, is the most promising and probably the only short-medium time measure allowing the aviation industry to reduce its emissions, helping to reach 2015 Paris Agreement targets.
During the last 10 years, many tests have been done with different drop-in organic products with high level of success. Present commercial aircraft engines are certified for using a mix of up to 50% of some of these new products. More additional research is still going on the convenience of developing new feedstocks and on their potential climate change impact.
The International Civil Aviation Organization (ICAO) is now discussing the best way to standardise the Life-cycle Analysis (LCA) of the most readily available products and what is the best certification procedures. This process is needed in order to apply CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation), approved in October 2016, intending to stabilize international aviation carbon dioxide (CO2) emissions at 2020 levels.
However, none of those new organic-origin fuels has proved the means to be produced in an economically competitive way versus fossil kerosene. It is generally accepted that some type of incentive mechanism needs to be implemented to make sustainable fuel attractive for the airlines in addition to the CORSIA and European Trading System provisions.
As the result of this Chinese and European cooperation proposal, some possibilities appear for a wider aviation sustainable fuel utilisation, considering both technical and economic areas, including the possible use of more feedstocks and production pathways than the existing ones. New fuel candidates will be evaluated in this project according to improved modelling methods, considering LCA optimization, climate change effects and technical and economic consequences of their use.

Status

CLOSED

Call topic

LC-MG-1-6-2019

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-MG-2019-SingleStage-INEA
LC-MG-1-6-2019 Aviation operations impact on climate change (InCo flagship)