HOMER | Holistic Optical Metrology for Aero-Elastic Research

Summary
HOMER is aiming at the development of non-intrusive experimental flow diagnostic and data assimilation methods to expand capabilities from the aerodynamic analysis to the investigations of fluid-structure-interactions (FSI) in wind tunnels and other test facilities. The objective of the project is to develop an unattained combined diagnostic approach with simultaneous optical measurements of fluid and structure. When this is achieved, the measurements can be treated invoking the relation between the balancing forces (inertia-, elastic- and aerodynamic forces) interacting (non-linearly) within the s.c. Collar Triangle (FI + FE + FA = 0).
The research focuses on the application and further development of time-resolved volumetric (4D) flow field measurements that enable determining the fluid flow pressure. 3D PIV and Lagrangian Particle Tracking (LPT) along with Digital Image Correlation (DIC) are tailored to determine the position and dynamics of fluid and surface motion and deformations. Pressure Sensitive Paint (PSP) methods will be employed simultaneously with DIC and PIV/LPT to obtain the surface pressure at transonic flow velocities together with the model deformation.
The project realizes experiments that support the validation needs of MDO tool developments, enhance the physical knowledge about Fluid-Structure-Interaction phenomena and range from the assessment of the method (turbulent flow over a deforming surface) to relevant problems in aeronautics (transonic buffeting) and flapping flight mechanics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/769237
Start date: 01-09-2018
End date: 28-02-2022
Total budget - Public funding: 4 914 391,00 Euro - 4 910 641,00 Euro
Cordis data

Original description

HOMER is aiming at the development of non-intrusive experimental flow diagnostic and data assimilation methods to expand capabilities from the aerodynamic analysis to the investigations of fluid-structure-interactions (FSI) in wind tunnels and other test facilities. The objective of the project is to develop an unattained combined diagnostic approach with simultaneous optical measurements of fluid and structure. When this is achieved, the measurements can be treated invoking the relation between the balancing forces (inertia-, elastic- and aerodynamic forces) interacting (non-linearly) within the s.c. Collar Triangle (FI + FE + FA = 0).
The research focuses on the application and further development of time-resolved volumetric (4D) flow field measurements that enable determining the fluid flow pressure. 3D PIV and Lagrangian Particle Tracking (LPT) along with Digital Image Correlation (DIC) are tailored to determine the position and dynamics of fluid and surface motion and deformations. Pressure Sensitive Paint (PSP) methods will be employed simultaneously with DIC and PIV/LPT to obtain the surface pressure at transonic flow velocities together with the model deformation.
The project realizes experiments that support the validation needs of MDO tool developments, enhance the physical knowledge about Fluid-Structure-Interaction phenomena and range from the assessment of the method (turbulent flow over a deforming surface) to relevant problems in aeronautics (transonic buffeting) and flapping flight mechanics.

Status

CLOSED

Call topic

MG-1.3-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.0. Cross-cutting call topics
H2020-MG-2017-Two-Stages
MG-1.3-2017 Maintaining industrial leadership in aeronautics